Second Generation Tetrahydroquinoline-Based Protein Farnesyltransferase Inhibitors as Antimalarials

Pravin Bendale,[†] Srinivas Olepu,[†] Praveen Kumar Suryadevara,[†] Vivek Bulbule,[†] Kasey Rivas,^{‡,§} Laxman Nallan,[†] Brian Smart,[†] Kohei Yokoyama,[†] Sudha Ankala,[†] Prakash Rao Pendyala,[∥] David Floyd,[⊥] Louis J. Lombardo,[#] David K. Williams,[#] Frederick S. Buckner,^{‡,§} Debopam Chakrabarti,[∥] Christophe L. M. J. Verlinde,[◊] Wesley C. Van Voorhis,^{‡,§} and Michael H. Gelb^{*,†,◊}

Departments of Chemistry, Medicine, Pathobiology, and Biochemistry, University of Washington, Seattle, Washington 98195, Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida 32826, Pharmacopeia Drug Discovery, Princeton, New Jersey, and Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543-4000

Received March 22, 2007

Substituted tetrahydroquinolines (THQs) have been previously identified as inhibitors of mammalian protein farnesyltransferase (PFT). Previously we showed that blocking PFT in the malaria parasite led to cell death and that THQ-based inhibitors are the most potent among several structural classes of PFT inhibitors (PFTIs). We have prepared 266 THQ-based PFTIs and discovered several compounds that inhibit the malarial enzyme in the sub- to low-nanomolar range and that block the growth of the parasite (*P. falciparum*) in the low-nanomolar range. This body of structure—activity data can be rationalized in most cases by consideration of the X-ray structure of one of the THQs bound to mammalian PFT together with a homology structural model of the malarial enzyme. The results of this study provide the basis for selection of antimalarial PFTIs for further evaluation in preclinical drug discovery assays.

Introduction

New antimalarial drugs are needed because of widespread resistance to well-established agents such as chloroquine (www.mmv.org). We have been working on inhibitors of malaria protein farnesyltransferase (PFT^a) because earlier studies showed that such agents are cytotoxic to *Plasmodium falciparum*,¹⁻³ the causative agent of falciparum malaria. PFT catalyzes the transfer of the 15-carbon farnesyl group from farnesyl-pyrophosphate to the SH group of the tetrapeptide motif CaaX (C is cysteine, *a* is usually but not necessarily an aliphatic amino acid, and X is a variety of amino acids) present at the C-terminus of proteins that become farnesylated. Inhibitors of mammalian PFT have been extensively developed as anticancer agents by the pharmaceutical industry,⁴ and thus, we have the opportunity to extend the medicinal chemistry and preclinical pharmacology of PFT inhibitors toward the development of antimalarial drugs (piggy-back drug development). To this end, we tested many of the known classes of PFT inhibitors and found that tetrahydroquinoline (THQ)-based PFT inhibitors developed at Bristol Myers Squibb⁵ are the most potent against *P. falciparum* PFT (Pf-PFT) and against parasite growth in human red blood cells.³ Our previous medicinal chemistry efforts led to the identification of THQ 1 (Figure 1) and a few related compounds that inhibit Pf-PFT in vitro, with IC₅₀ (concentration of inhibitor that 50% inhibits Pf-PFT) values of ~0.6 nM, and inhibit parasite growth in red cells with ED_{50} (concentration of inhibitor that 50%

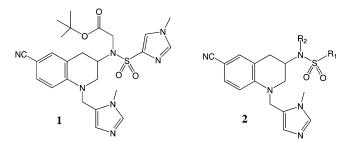


Figure 1. Tetrahydroquinoline-based protein farnesyltransferase inhibitors. See main text for discussion.

inhibits the growth of *P. falciparum* in red blood cells in vitro) values of \sim 5 nM.³ Studies with mammalian PFT have shown that the 6-cyano group on the THQ ring is important in conferring tight enzyme binding,⁶ and structural studies show that the imidazole appended to N-1 of the THQ ring directly coordinates the Zn²⁺ ion at the active site of mammalian PFT.^{7,8}

Continuous dosing of THQ **1** using surgically implanted, osmotic minipumps in mice infected with rodent malaria (*P. berghei*) led to a dramatic reduction in parasite number.³ Studies of malaria resistance to these Pf-PFT inhibitors provided very strong evidence that blocking Pf-PFT action is the basis for parasite killing.^{7,8} The reasons that PFT inhibitors are very toxic to malarial cells but not to mammalian cells are not known. One hypothesis is that the malaria parasite appears to lack protein geranylgeranyltransferase type I, the enzyme responsible for the monogeranylgeranylation of proteins in mammalian cells. Thus, some critical housekeeping proteins may be farnesylated in malaria but geranylgeranylated in mammalian cells.

The purpose of the present study is to report our continued efforts to develop THQ-based antimalarials. A number of THQs were prepared with various groups attached to the sulfonyl group of $1 (R_1 \text{ of THQ } 2 \text{ in Figure 1})$ or to the sulfonamide nitrogen (R_2 in THQ 2 in Figure 1). Less extensive structure-activity studies were carried out by variation of other groups attached to the THQ core. We were able to identify several new THQ-based Pf-PFT inhibitors with sub- to low-nanomolar potency

^{*} To whom correspondence should be addressed. Phone: 206-543-7142. Fax: 206-685-8665. E-mail: gelb@chem.washington.edu.

[†] Department of Chemistry, University of Washington.

[‡] Department of Medicine, University of Washington.

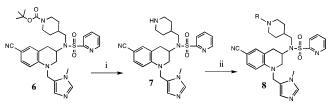
[§] Department of Pathobiology, University of Washington.

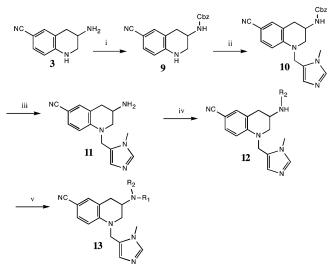
^{II} Department of Molecular Biology and Microbiology, University of Central Florida.

[⊥] Pharmacopeia Drug Discovery.

[#] Bristol-Myers Squibb Pharmaceutical Research Institute.

⁶ Department of Biochemistry, University of Washington.

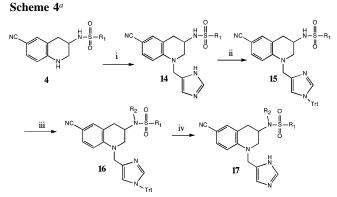

^{*a*} Abbreviations: ED₅₀, effective dose of inhibitor that reduces parasite growth in vitro by 50%; IC₅₀, inhibitor concentration that reduces the rate of PFT in vitro by 50%; PFT, protein farnesyltransferase, PFTI, PFT inhibitor, THQ, tetrahydroquinoline.


^{*a*} Reagents and conditions: (i) R₁SO₂Cl, DIPEA, CH₃CN; (ii) 1-methyl-1*H*-imidazole-5-carboxaldehyde, triethylsilane, 1,2-dichloroethane:trifluoroacetic acid (1:1); (iii) R₂-Br, Cs₂CO₃, DMF.

Scheme 2^a

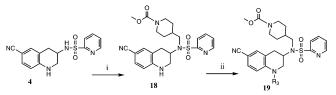
^{*a*} Reagents and conditions: (i) 10% trifluoroacetic acid, CH₂Cl₂; (ii) RCOCl or ROCOCl or RNCO or RSO₂Cl, CH₂Cl₂, DIPEA.

Scheme 3^a

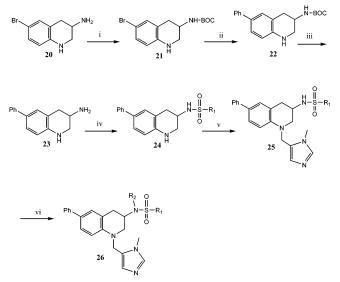


^{*a*} Reagents and conditions: (i) Cbz-Cl, Et₃N, CH₃CN; (ii) 1-methyl-1*H*imidazole-5-carboxaldehyde, triethylsilane, 1,2-dichloroethane:trifluoroacetic acid (1:1); (iii) 10% Pd/C, CH₃OH; (iv) R₂-Br, Cs₂CO₃, DMF; (v) R₁COOH, EDC, HOBt, Et₃N, DMF, or R₁COCl, Et₃N, CH₂Cl₂ or R₁SO₂Cl, Et₃N, CH₂Cl₂.

on Pf-PFT and with low nanomolar potency on *P. falciparum* growth in vitro.

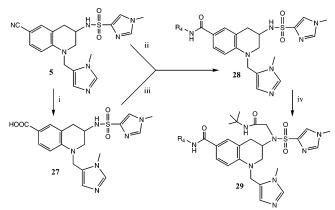

Chemistry

Many of the THQs **2** prepared in this study were prepared by the route shown in Scheme 1 starting from racemic 6-cyano-3-amino-THQ (compound **3**, Scheme 1), which was made as described.⁵ This route is useful for variation of the R_2 group, which is added in the last synthetic step. Scheme 2 was used to prepare analogs of **2** in which the R group attached to the piperidine nitrogen is varied. Scheme 3 was used to allow easier variation of both the R_1 and R_2 groups because, unlike in Scheme 1, the R_1 group is introduced later in the synthesis. Scheme 4 was used to prepare THQs, which lack the methyl

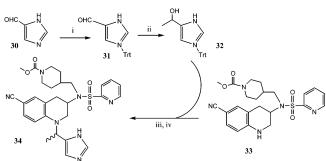

^{*a*} Reagents and conditions: (i) 3*H*-imidazole-4-carboxaldehyde, triethylsilane, 1,2-dichloroethane/trifluoroacetic acid (1:1); (ii) trityl chloride, DIPEA, DMF; (iii) R₂-Br, Cs₂CO₃, DMF; (iv) CH₂Cl₂, trifluoroacetic acid.

Scheme 5^a

^{*a*} Reagents and conditions: (i) R₂-Br, Cs₂CO₃, DMF; (ii) 3-methyl-3*H*-imidazole-4-sulfonyl chloride, DMAP, CH₃CN.


Scheme 6^a

^{*a*} Reagents and conditions: (i) BOC-anhydride, K₂CO₃, dioxane-water (4:1); (ii) phenylboronic acid, Ba(OH)₂, tetrakis triphenylphosphine palladium, DME–water (5:1); (iii) 20% trifluoroacetic acid, CH₂Cl₂; (iv) R₁SO₂Cl, DIPEA, CH₂Cl₂; (v) 1-methyl-1*H*-imidazole-5-carboxaldehyde, triethylsilane, 1,2-dichloroethane/trifluoroacetic acid (1:1); (vi) R₂-Br, Cs₂CO₃, DMF.


group on the zinc-binding imidazole. In this case, tritylation of the imidazole was required prior to alkylation of the sulfonamide nitrogen. Scheme 5 shows the synthesis of a THQ analog in which the methylene bridge between the N-1 of the THQ core and the Zn^{2+} -binding imidazole group is replaced with a sulfonyl group or with a CH(CH₃) group. THQs containing a 6-phenyl group in place of the 6-cyano group were prepared according to Scheme 6. The key step is the introduction of the phenyl group via Suzuki coupling (conversion of **21** to **22**). Scheme 7 shows the synthesis of THQ analogs in which the 6-CN is replaced with carbonyl-bearing functional groups. Scheme 8 was used to prepare the THQ analog **34**. The key reaction is

Scheme 7^a

^{*a*} Reagents and conditions: (i) concd HCl, 80 °C; (ii) H₂SO₄, R₄-OH; (iii) R₄-NH₂, EDC, DMAP, DMF; (iv) alkyl bromide, Cs₂CO₃, DMF.

Scheme 8^a

^{*a*} Reagents and conditions: (i) trityl chloride, Et₃N, DMF; (ii) MeMgBr, THF, 0 °C; (iii) MsCl, CH₃CN, 60 °C; (iv) trifluoroacetic acid, CH₂Cl₂.

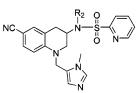
nucleophilic displacement between the mesylate derived from the indicated secondary alcohol **32** and secondary amine **33**.

Inhibition of Pf-PFT and P. falciparum Growth by THQ-Based Pf-PFT Inhibitors. We first give a general description of the potencies of THO-based Pf-PFT inhibitors on the enzyme and on P. falciparum growth in vitro, and then we attempt to provide a structural rational for some of the activity data. Our initial structure-activity data on THQ-based inhibitors of Pf-PFT led to the discovery of compounds with $R_1 = 2$ -pyridyl or N₁-methyl-4-imidazolyl as being potent inhibitors of Pf-PFT.³ In Table 1, we report a study of THQs with $R_1 = 2$ -pyridyl and with a variety of substituents as R2 groups. A number of THQs were found that inhibited Pf-PFT in vitro by 50% (IC₅₀) in the low nanomolar range and that also inhibited the growth of *P. falciparum* in erythrocyte cultures in vitro by 50% (ED_{50}) in the low nanomolar range (i.e., 48, 55, 56, 57, 61, and 62). The most potent compound in the series is 55 with an $ED_{50} =$ 17 nM for the 3D7 strain and 10 nM for the K1 strain. Wellestablished antimalarial drugs such as chloroquine display ED₅₀ values in the low nanomolar range. Thus, the potency achieved for some of our THQ-based PFT inhibitors is probably sufficient for an antimalarial drug discovery effort. In general, we did not find any compound that inhibited P. falciparum growth in the low nanomolar range that was a relatively poor inhibitor of Pf-PFT.

Table 2 summarizes results for THQ-based PFT inhibitors with $R_1 = N_1$ -methyl-4-imidazolyl and with variation of the R_2 group. Many compounds were found with IC₅₀s and ED₅₀s in the low nanomolar range. The most potent in the series are **106**, **107**, **102**, **104**, **115**, and **131** with values of ED₅₀ < 10

nM. Compound **106** shows exceptional potency with an ED_{50} = 1.8 nM. This is the most potent compound in terms of ED_{50} that we found in the current study and among the most potent antimalarials ever reported. In general, the compounds with R₁ = N₁-methyl-4-imidazolyl are more potent than the analogous compounds with R₁ = 2-pyridyl.

We also carried out side-by-side pharmacokinetic studies of potent THQ-based Pf-PFT inhibitors to discover a compound that could be tested in malaria-infected rodents.⁹ We measured the rate of flux of THQ-based PFT inhibitors across a tightjunction monolayer of Caco-2 cells and showed that this in vitro assay is a good predictor of oral bioavailability of these compounds in rodents.⁹ In general, we found that $R_1 = 2$ -pyridyl promotes better Caco-2 permeability and oral bioavailability than compounds with $R_1 = N_1$ -methyl-4-imidazolyl.⁹ Because it appears that THQ-based PFT inhibitors are cleared in rodents by hepatic metabolism, we measured the half-time for metabolism of THQs by rat and mouse liver microsomes in vitro.⁹ Based on an overall balance of desirable properties, 6 emerged as a promising antimalarial lead compound.⁹ Thus, we investigated in detail the structure-activity relationships among 6 analogs. Table 3 shows the results with 6 analogs in which the R group attached to the piperidine N of the R₂ group is varied. In general, we found a good correlation between IC_{50} values for Pf-PFT inhibition and ED₅₀ values for blocking the growth of parasites in vitro.


When those compounds in Table 3 with values of $ED_{50} < \sim 100$ nM were tested for Caco-2 permeability and microsomal stability,⁹ **162** emerged as a compound with a good balance of potency and desirable pharmacokinetic properties. In Table 4, we summarize results with compounds in which R₂ is held as the R₂ of **162** and R₁ is varied. We also studied compounds with R₂ = 2-fluorophenylCH₂, 4-MeSO₂-phenylCH₂, and *t*-BuNHCOCH₂ because these groups led to potent compounds in the early scans. Most compounds in this series were significantly less potent on Pf-PFT and on parasites compared to **162**. The exceptions were those with a small heterocyclic R₁ group, that is, **191**.

Molecular modeling studies described below suggested that addition of a Me group to $R_1 = N_1$ -methyl-4-imidazolyl at the 5-position would better fill the R_1 -binding pocket on Pf-PFT. Table 5 shows a scan of R_2 groups keeping R_1 as 4-(N_1 -methyl-5-Me-imidazolyl). Compound **234** with the same R_2 as in **162** emerged as the best compound.

Table 6 gives the activity of compounds in which the sulfonyl is replaced by carbonyl (sulfonamide to amide change). In general, these compounds are much poorer inhibitors of Pf-PFT and of *P. falciparum* growth than the corresponding sulfonyl-containing THQ compounds. Thus, we prepared only a limited set of these amide-containing THQ compounds.

Table 7 shows THQ-based compounds with alteration to the *N*-Me-imidazoleCH₂ group attached to the THQ ring N. This substituted imidazole is a direct ligand to the Zn^{2+} at the active site of Pf-PFT (see below). Removal of the Me group from the imidazole has only a minimal effect on binding to Pf-PFT (as predicted by modeling) but greatly increases ED_{50} for killing parasites, suggesting that methylation of the Zn^{2+} -binding imidazole promotes penetration of compound across erythrocyte and parasite membranes. Replacement of the CH₂ that links the imidazole to the THQ ring N by SO₂ obliterates binding to Pf-PFT and antiparasite activity. Addition of a Me group to this CH₂ bridge (mixture of four stereoisomers) also greatly reduces activity as does replacement of the imidazole by a 3-pyridylCH₂ group.

Table 1. 6-CN-THQs with $R_1 = 2$ -Pyridyl^{*a*}

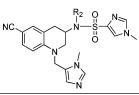
Compound	R ₂	/ % In 50 nM	Pf-PFT hibition 5 nM	at 0.5 nM		D ₅₀ M) K1	Compound	\mathbf{R}_2	7 % In 50 nM	Pf-PFT hibition 5 nM	at 0.5 nM	(r	D ₅₀ M) K1
35	رم کی	93	64	18	230	1005	59	N	94	62		450	2800
36	~0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	96	65	17	189	932	59	- The	24	02		450	2800
37		95	66	18	440	240	60	N Tro	96	93	17	144	965
38	H ₂ N	82	37		1600	2200	61	NO	98	82	19	51	210
39		81	32	4	300	250		N-O	70				
40		91	48	9	230	240	62	C L	100	93	42	45	56
41	V O N Start	86	80	35	130	170	63		97	66		140	600
42		97	70	9	133	75	64	N you	98	79	10	370	400
43 44		97 98	80 78	24 27	250 320	375 270	65		100	93	4	51	100
							66	N N N	95	89		105	490
45		92	52	6	1250	2600	67	-0 N	96	94	66	600	900
6	+ 0 N / Jan O	100	89	19	155	180	68	Ö Br	66	15		520	750
46	O H O	90	47	14	510	400	69		96	84	49	210	405
47	O H O	96	77	28	100	100	70		98	87	32	700	700
48	O N Japat	95	68	6	18	45	71	F-	91	50	11	430	2500
49		99	84	25	230		72	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100	82	19	230	1250
50	0 N N N N N N N N N N N N N N N N N N N	90	59	15	230	400	73	CF ₃	91	38	0	650	3000
51	O N Star	89	69	26	250	600	74	F	96	71	9	200	650
52	H ₂ N	65	11	6	2700	>5000	75	, et al.	98	81	22	120	600
53	H ₂ N	32	7	0	>5000	>5000	, ,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	30	01	22	120	000
54	HN	18	6	0			76	CF3	95	53	1	300	1500
55	N{	99	96	74	17	10							
56	N N	99	96	68	13	20	77	N-(97	69		143	617
57	N N	95	91	67	12	16	78	N-	90	52		850	850
58	F ₃ C O	84	39		750	690	79	N N	53	11		450	590

Lable L. Communeu	Table	1.	Continued ^a
-------------------	-------	----	------------------------

Compound	R ₂	/ % Ir 50 nM	Pf-PFT hibition 5 nM	at 0.5 nM		D ₅₀ 1M) K1	Compound	R ₂	F % In 50 nM	7-PFT hibition 5 nM	at 0.5 nM		D ₅₀ 1M) K1
80	N ^S N	85	31	12	175	98	85	C o o	96	77	46	1875	
81	S N CI	53	4		3000	3000	86		92	63		820	3600
82		88	41	10	810	1450	87	N-0 N-0	84	32	0	2150	1425
83	N Marke	88	46	17	1738	1315	88		90	51	0	350	200
84	Br	55	13		2750		89	HO	97	81	24	1000	800
							90	HO	81	33	6	2100	2600

^a All prepared according to Scheme 1.

THQ compounds with a 6-phenyl instead of 6-CN were available to us from a different drug discovery program. Some of these compounds maintain modest potency as inhibitors of Pf-PFT and as antimalarials (266, 267), but in general, we could not find a 6-phenyl THQ with a potency approaching our best compounds in the 6-CN-THQ series. It may be noted that the length of the phenyl is about the same as the length of the CN group, and thus, compounds like 267 may be binding to Pf-PFT in the same way as the 6-CN-THQ compounds, but we have no experimental evidence for this.


The data in Table 9 shows that replacement of the 6-CN group on the THQ core with various amides or a carboxylate is very detrimental to Pf-PFT binding and parasite killing.

Structural Rational of the Structure-Activity Results for THQ-Based PFT Inhibitors. To date, we have not been able to obtain Pf-PFT in amounts sufficient for crystallization trials. However, the X-ray structure of rat and human PFTs are available alone and with a number of bound inhibitors, including the structure of the rat-PFT/162 complex.⁸ As described in General Methods, we made a homology model of Pf-PFT based on this experimental structure. Most of the residues in the 162 binding site are conserved between rat- and Pf-PFT. The only differences are that Pro-150 β of rat-PFT, which resides in the vicinity of the terminal methyl of the R₂ carbamate of 162, is replaced with Thr-512 β in Pf-PFT. Tyr-93 β , adjacent to the 6-CN of **162**, is Leu-443 β in Pf-PFT. Two more conservative changes, somewhat further away from 162, play a role in the binding of other THQ-based inhibitors discussed in this paper: Tyr-166 α (Phe-151 α in Pf-PFT) and Phe-360 β (Tyr-836 β in Pf-PFT). Thus, the crystal structure of the complex of 162 with the rat enzyme is of great value despite only 23% sequence identity for rat- versus Pf-PFT α-subunits and 37% identity between the β -subunits.

The elucidation of the structure—activity relationships of **162** and other THQ-based PFT inhibitors is complicated by the use of racemates. Each compound is a mixture of two enantiomers due to the chiral center at carbon-3 of the THQ ring (Figure 1).

Moreover, each enantiomer can exist in two conformations, with the 3-substituent either axial or equatorial. Hence, it is crucial to know which of the two enantiomers block the enzyme. To gain insight, we first determined the IC₅₀ of the individual enantiomers of 162. This was carried out by coupling 6-cyano-1,2,3,4-tetrahydro-quinolin-3-ylamine hydrochloride to S-mandelic acid and separating the diastereomers as described.^{5,10} The two enantiomeric amines were then converted to the two enantiomers of 162, 163, and 164, as shown in Scheme 1. The R-enantiomer of 162, 163, displayed an IC₅₀ against Pf-PFT that is 10 times below that of the S-enantiomer, 164 (Table 3). This difference is recapitulated in the observed ED₅₀s for blocking P. falciparum growth. The 10-fold difference in enzyme binding is modest, corresponding to a difference in binding energy of 1.3 kcal/mol. Superposition of the two enantiomers shows that the first substituent atoms of the two possible equatorial enantiomers at C3 of the THQ ring are only 0.8 Å apart, thereby, allowing for the C3 substituents to adopt similar positions in the binding site regardless of the stereochemistry (Figure 2).

Figure 3 (top panels) shows the experimental, ternary structure of rat-PFT with bound 162 inhibitor and farnesyl-pyrophosphate substrate.8 The THQ ring of 162 stacks face-on-face and at an angle of about 25° with Tyr 361 β (Tyr 837 β in the Pf-PFT homology model), projecting the N-methyl-imidazole so that it coordinates the catalytic Zn^{2+} of the enzyme (Figure 3). The 6-CN sits in a narrow groove made by Leu-96 β (Leu 446 β in Pf-PFT)), Trp-106β (Trp-456β in Pf-PFT), Asp-359β (Asp-835 β in Pf-PFT), and Tyr-361 β (Tyr-837 β in Pf-PFT). In this way, the 6-CN-benzo group of 162 adopts a similar but not identical position as the group of 3-benzyl-1-(3H-imidazol-4-ylmethyl)-4-(thiophene-2-sulfonyl)-2,3,4,5-tetrahydro-1*H*-benzo[*e*][1,4]diazepine-7-carbonitrile (BMS-214662), a tetrahydrobenzodiazepine-based PFT inhibitor for which an X-ray structure of its complex with rat PFT has been published;11 the difference in 6-CN-benzo group atoms ranges from 0.5 to 0.9 Å (Figure 3, bottom left panel). The X-ray structure of bound 162 (obtained **Table 2.** 6-CN-THQs with $R_1 = 4-(1-Me-1H-Imidazolyl)^a$

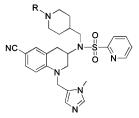
	P		Pf-PFT			F	Ds0	⁻ N			P6-PFT			F	D ₅₀
Compound	R_2	% 50 nM	<i>Pf</i> -PFT Inhibitic 5 nM	n at 0.5 nM	IC ₅₀ (nM)	(n 3D7	D ₅₀ M) K1	Compound	R ₂	% 50 nM	<i>Pf</i> -PFT Inhibition 5 nM	n at 0.5 nM	IC50 (nM)	(n 3D7	M) K1
91	0 0	99	92	25		75	50	117	°↓~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	99	65	0		87	60
92	H ₂ N	98	87	31		150	73	117		"	05	U		07	00
93	H ₂ N N H	^			0.9	250	130	118	Ls - 2	100	86	26		21	8.5
94	H ₂ N	72	15	0		>5000	>5000	119	S H	100	100	86		6.2	4.2
95	H ₂ N	60	5	5		>5000	4600	120		97	91	55		130	130
96	N	64	15	0		2700	3100								
97	N Star	34	9	0		2600	>5000	121		99	98	69		57	<20
98	Xoly 2	99	90	28		460	75	121	۳ ۲	,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,		57	-20
99	N N N N N N N N N N N N N N N N N N N	100	96	61		19	17	122		11	5	1		2600	3600
100	HO	97	81	19		125	400	123	-m	100	95	34		55	20
101	HN J	65	6	0		>5000	>5000	124	NC	96	90	54		70	55
102	O N C C C C C C C C C C C C C C C C C C	97	95	54		9	4.5	125	MeO	62	10	1			
103) O N J	98	90	24		10	5.5		HO_ / ブル						
104		98	96	49		14	7	126		66	19	0		>5000	>5000
105	N Jos	100	98	46		25	<20	127	N	98	96	25		10	36
106	N - E	99	98	54		1.8	1.8	128	N	99	89	17		70	210
107	S	99			0.4	12	2	129	C L	69	9	0		3000	4500
108	F ₃ C	97	96	54		78	75	129	Br	09	,	0		3000	4500
109	F	99	93	50		40	100	130		100	98	46		620	163
110		100	99	65		18	18	131		100	99	82		6	10
111		99	93	36		71	75	132		100	100	77		40	
112	F	100	95	42		50	65	133	N N- N-	93	54		5	330	340
113	F 	100	98	43		16	16	134		98	98	56	0.5	42	38
114	CF3	99	82	8		65	70	135		99	90	9		68	65
115		97	96	82		9	10	136	ON NOT STATE	99	95	30		56	65
116	N	93	62	9		200	300	137	SN N	90	58	0		3000	3750

|--|

Compound	R ₂		<i>Pf</i> -PFT Inhibitio 5 nM	n at	IC50 (nM)	3D7	ED ₅₀ (nM) K1	Compound	R ₂		<i>Pf</i> -PFT Inhibitio 5 nM	n at	IC50 (nM)	3D7	ED ₅₀ (nM) K1
138	N S N	99	94	18		60	230	143		ر عو 99	96	57		140	100
139		99	91	37		210	600	144		99	91	12		355	350
140	O N	92	20	0		490	890		<∽_٥	,,,		12		500	
141		98	97			14	18	145		99	90	30		390	
142		97	96	90		40	130	146	C C C C C C C C C C C C C C C C C C C	99	99	66		20	<20

^a All prepared according to Scheme 1 except compound 104 (Scheme 2).

by soaking the rat PFT crystals with racemic 162) shows that only one enantiomer binds; the data is consistent with our observation that the enantiomer 163 is the better inhibitor (see above). The C3 substituent is equatorial, reflecting the 2.7 kcal/ mol calculated preference for this conformation over the axial one in solution. The 2-pyridyl R1 substituent makes a hydrogen bond with Tyr-361 β (Tyr-837 β in Pf-PFT) and stacks against the second isoprene unit of farnesyl-pyrophosphate. The 2-pyridyl also stacks against the Zn²⁺-binding N-Me-imidazole of **162**. The R₂ substituent resides in a large, mainly hydrophobic pocket, which is normally occupied by the side chain of the X residue of the CaaX motif of proteins that are farnesylated (Figure 3, bottom right panel). The R₂ group only partially fills this pocket. The carbonyl oxygen of the carbamate portion of the R₂ substituent of 162 accepts hydrogen bonds with the side chains of Ser-99 β and Trp-102 β of rat-PFT (Ser-449 β and Trp- 452β in Pf-PFT). The terminal Me of the carbamate portion of the R₂ group makes hydrophobic contacts with the side chains of His-149 β (His-509 β in *P. fal.*) and Ala-151 β (Ala-511 β in Pf-PFT). The R₂ piperidine contacts Trp-102 β (Trp-452 β in Pf-PFT). Remarkably, the two oxygens of the sulfonamide do not make direct hydrogen bonds to the protein.


We used the 162/PFT structural information as a starting point for constructing models of many of the other THQ-based PFT inhibitors prepared in this paper. Rather than discuss each compound, we describe the trends that are supported by the structural information. Figure 4 (top panel) shows the predicted binding mode of 162 in the active site of Pf-PFT. As already noted, THQ-based compounds in Table 1 have a 6-CN group, $R_1 = 2$ -pyridyl, and variation of the R_2 group. Most of the compounds in Table 1 are predicted to be able to bind with R₂ in the a_2X region of the Ca_1a_2X pocket, while maintaining the pose of the THQ scaffold and R1 and R3 groups as seen experimentally. R₂ groups that end in a polar group are poor Pf-PFT binders because they cannot interact favorably with the largely hydrophobic environment (38, 39, 52, 53, 54, 90). Moreover, THQs with small R₂ groups (38, 52, 53, 90) barely fill the pocket and therefore display poor enzyme inhibition. On the other hand, the R_2 group of 87 is too large to fill the pocket. Long, linear R₂ groups, some with a small branch, that provide several apolar atoms work better as Pf-PFT inhibitors as they can reach Trp-456 β , Trp-452 β , Ala-511 β , and His-509 β , but this comes at a cost of the loss in conformational entropy when the flexible side chain rigidifies in the active site of Pf-PFT (35, 36, 40, 41, 42, 43, 44, 45, 48, 46, 47, 49, 50, 38).

The R₂ groups of all other THQs contain one or more rings. The best R₂ groups have a short ethylene linker (thus minimizing entropic cost of enzyme binding) followed by a five-membered, aromatic heterocycle (55, 56, 57). They are predicted to bind in the same way as 162 (Figure 4, top right), engaging in extensive hydrophobic interactions with Leu-446 β , Trp-456 β , Trp-452 β , and C4 of their own THQ scaffold; the latter probably stabilizes the enzyme-bound R₂ conformation for the inhibitor free in solution. Two of the R₂ ring atoms remain solvent exposed, which explains why those two positions can be replaced by nitrogen atoms (56, 57). However, a slightly larger benzene ring cannot be accommodated in the same position (74, **75**, **76**), but further *para*-substitution with $MeSO_2$ leads to two hydrogen bonds of this group with Arg-564 β and Gln-152 α , plus hydrophobic contacts with His-509 β (69), explaining the decent potency of this compound. Expansion of the pyrrole ring to an indole (64) leads to reduced inhibition because the R_2 conformation cannot be maintained due to steric clash with Leu-446 β . Expansion of the pyrrole ring to phthalimide (85) also leads to a different conformation because of steric reasons, though the benzo part is now predicted to interact with His- 509β .

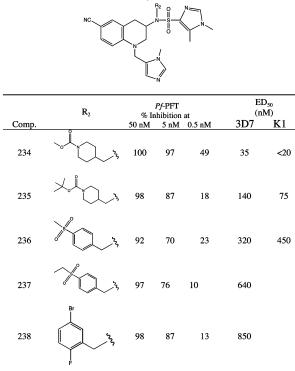
Most R_2 groups with a single methylene linker to an aromatic ring are unable to make an efficient contact with the hydrophobic residues in the pocket of Pf-PFT as the ethylene-linked ones, even when they in turn carry a hydrophobic substituent (58, 59, 60, 61, 62, 63, 65, 66, 68, 70, 71, 69, 73, 77, 78, 79, 80, 81, 83, 6, 84). Longer linkers to a ring also do not allow for efficient contact of hydrophobic residues in the pocket (82, 86, 88).

Replacement of the sulfonamide group of THQs with amides universally leads to a loss of binding to Pf-PFT (Table 6). In the crystal structure of rat PFT with 162, and by homology with Pf-PFT, the sulfonamide moiety adopts a known low-energy conformation. Sulfonamides, which have a pyramidalized nitrogen atom, adopt two low-energy conformations because the N-S bond has partial double character. One is eclipsed, thereby allowing for maximal overlap of the nitrogen lone pair electrons and the S=O bonds (Figure 5). The other one is obtained by nitrogen inversion, thereby reducing the steric interactions.¹² Ab initio calculations at the MP2/6-31+G* level for the model compound N,N-dimethylmethanesulfonamide, the closest analog to the sulfonamide substructure in our molecules, shows that this compound prefers the inverted conformation with a C-N-S=O torsion angle of 30°.13 This conformation is similar to what is observed in the X-ray structure of 162 bound

Table 3. Analogs of 6 with a Variation of the R Group Attached to the Piperidine N

Compound	Syn. Scheme	R	% In 50 nl	Pf-PFI hibitic M 5	on at 5 nM	IC ₅₀ (nM)		D ₅₀ M) K1	Compound	Syn. Scheme	R	% In 50 nN	f-PFT hibitio A 5 .5 nM	n at nM	IC ₅₀ (nM)	El (n 3D7	D ₅₀ M) K1
	2	<u> </u>							164	1	<u>0</u>		.5 1114		(iiivi)	501	
147		inter .	94	65	29	2.4	37	95	Isomer(S)		-0- -1	98	70	02	2.7	95	75
148	2	o o	99	82	20	0.8	16	25	165	2	O C C C C C C C C C C C C C C C C C C C	100	95	46	0.5	55	40
149	2	ⁱ nt.	98	91	24	0.6	18	13	166	2		97	90	36		50	50
150	2	in the second se	99	76	17	1.2	48	75	167	2	O C C C C C C C C C C C C C C C C C C C	100	88	12	1.4	62	62
151	2	O Juri	96	88	36	0.6	20	76	168	2	F F	91	91	47		65	75
152	2	O La construction of the second secon	95	63	12	3	80	690	169	2		98	66	13		550	650
153	2	, shy	100	94	39	0.75	11.5	10	170	2	O N H Jara	98	95	60	0.65	67	65
154	2	O Starie	100	94	39		58	50	171	2	N zrad	100	94	35		13	11.5
155	2	F O F	98	77	30	2	43	55	172	2	O N N Solution	100	93	38		65	45
156	2	o Virent o	100	92	31		50	60	173	2	H H H H	98	84	28		320	150
157	2	John Marine Mari	88	37	15		750	690	174	2	N Jord	99	91	31		35	65
158	2	O Joris	94	63	20	7	150	330	175	2	N sod	94	62	14		140	200
159	2	O C C C C C C C C C C C C C C C C C C C	26	7	0	900	460	1700	176	2	Br O N H	38	0	0		3000	2800
	2	CI O							177	2	O 	99	93	45	0.9	62	50
160	2	o O O O	92	92	51		80	93	178	2	O==== O==== O	98	94	56		75	55
161		S	99	87	35		70	81	179	2) −s e	96	89	17		75	55
162	2	0 0 0 0 0 0 0	100	96	61	0.58	16	15	180	2	O S S S S S S S S S S S S S S S S S S S	96	67	7		275	280
163 Isomer (R	1	O solution	100	99	58	0.29	11	13	181	2		92	60	20		700	650

to rat PFT (Figure 5). Simple stereochemical considerations indicate why the amide analogs of our sulfonamide THQ PFTIs are poor inhibitors. The amide function has two trigonal centers, and thus, a planar arrangement of all substituents. This leads to an orientation of the R_1 group in the amides that is 90° off from


the orientation of the R_1 of **162** (Figure 5), and this altered orientation is sterically disallowed by the active site of the PFT.

Modeling showed that there is space in the active site of Pf-PFT to accommodate groups other than *N*-methyl on the Zn^{2+} binding imidazole. A benzyl (**254**, Table 7) was not very **Table 4.** 6-CN-THQs with a Variation of R_1^a

Compound	R ₁	R ₂	% 50 nM	<i>Pf</i> -PFT Inhibition 5 nM	n at	IC ₅₀ E (nM) (n 3D7	D ₅₀ M) K1	Compou	nd R ₁	R ₂	5	% Inhi	PFT bition at nM 0.5 nM	IC ₅₀ (nM) 3D	ED ₅₀ (nM) 7 K1
182		N State	98	93	43	50	70	207	O S O	ON The	15	0	0	>5000	>5000
183	× M		99	93	48	100		208		~~~	51	7	0	600	>5000
184	МеО	N N	98	79	14	170	190	209			61	11	0	820	2100
185	AcHN - S	N N N	65	6	0	1800	2000	210			41	16	11	1200	3050
186		O N Jak	97	80	24	55	70	211	_n—ફ		62	10	8	360	3600
187		O N J	93	86	39	90	150	212			96	76	12	580	500
188			98	84	20	140	160	213	N		94	62	23	175	175
	N's''	0						214 215			86 66	44 22	10 13	730 900	750 1000
189	\bigtriangledown	O N N	88	39	2	550	1700	215			25	4	4	150	150
190		O N J	95	80	24	260	400	217	N _S N		74	28	4	700	1000
191	N	N N N	99	99	72	3	1.6	218			99	91	38	165	330
192		O N Sta	96	67	15	38		219	MeO-		97	83	17	185	340
193	N J	N State	100	96	39	60	75	220	CI		99	87	16	400	800
194	√ s	N N N	95	66	18	55	75	221			100	100	84	<20	<20
195	Kan a start a	N N	99	86	25	62	140		N N						
196		N Star	92	61	10	2300	1900	222	N S	° ° ×	97	88	36	75	60
197	HOOC	N N	89	49	5	>5000	675	223			97	78	10	2100	3500
198	N	N in	100	98	39	42	45	224	s	-ġ-<	97	55	13	830	
199		N Z	66	5	0	2700	>5000	225	F		96	67	8	600	
200		O N N	44	00	0	4100	>5000	226		Y N → 2	80	27	2	8 750	3100
201		N N N	55	22	1	1100	1800	227		→ H → N H → N					>5000
202		N N N	37	3	0	>5000	3950	228			3	0	0	>5000	
203	N-s	N N	58	19	0	1600	2400	229	Ň N N L	× H × N × N	0	3		>5000	
204		N N N	99	81	24	138	105	230	N Jor	× H × N → Z					
205	N N	O N J	99	89	31	135	100	231	H ₂ N	×N ×	11	10	5	>5000	>5000
206		N Ja	68	21	2	>5000	>5000	232		∽N M M M M M	60	21	14	>5000	>5000
		~ ~ ~						233	Ö F{-}}	× °					

^a All were prepared according to Scheme 1.

effective probably because of the extra entropy loss due to two extra rotatable bonds. Replacement of the methylene linker in the Zn²⁺-binding arm (attached to N1 of the THQ ring) by an SO₂ (**255**, Table 7) leads to an inactive compound. This is most likely because of the increased electron-withdrawing character of the SO₂ linker, thereby decreasing the basicity of the imidazole N and, thus, the coordination affinity to the active site Zn²⁺. Using the SPARC v3.1 program,^{14,15} we calculated that the pK_a of the protonated imidazole drops from 6.8 to 5.1 when the CH₂ linker is replaced with SO₂. If the drop in proton affinity is the same for Zn²⁺, this drop in pK_a of 1.7 would give a drop in IC₅₀ by 50-fold.

Replacement of the 6-CN group with phenyl is tolerated (Table 8). Replacement with more polar substituents (Table 9) is not tolerated, which is consistent with the lack of apporpriate hydrogen bond donors and acceptors in the pocket on Pf-PFT that binds the 6-CN group.

Inhibition of Mammalian PFT. A subset of THQ-based PFTIs were tested for inhibition of rat PFT, and results are summarized in Table 10 and compared to those obtained with Pf-PFT. Most compounds displayed comparable potency on both enzymes. The exceptions are **84** and **129**, which are about 10-fold more potent on Pf-PFT than on rat PFT, and **126**, which shows the reverse preference. As noted in our earlier publications, clinical trials have shown that PFTIs are well tolerated in man after several weeks of continuous dosing. Thus, specificity toward Pf-PFT versus mammalian PFT is probably not required for a drug that would be used to treat malaria over the course of a few days.

Conclusions

In this study we show that THQ-based PFTIs are potent inhibitors of Pf-PFT activity and of erythrocytic stage *P*. *falciparum* growth. Several compounds were found with growth inhibition potency down in the low nanomolar range, with several compounds blocking parasite growth at concentrations

Table 6. 6-CN-THQs with Amides^a

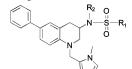
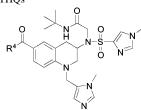

	Ν		Y	R₂ 0 ∥ N—C-	R1			
		N L) T	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
Compound	R	\mathbf{R}_2	/ % I 50 nM	P∱-PFT nhibitic [5n	nat M. 0.5 nM	IC ₅₀ 4 (nM)	El (n 3D7	D ₅₀ M) K1
239	0-N	×0×1×1				>50	>5000	>5000
240	N	×°°				>50	>5000	>5000
241		×0 ⁴				>50	>5000	>5000
242	- o -ξ	F ۲	26	9	6		2900	
243		^F → [≿]	56	19	11		290	
244		J.	33	0	0		690	750
245		F Ž	43	1	0		650	730
246			33	0	0		950	2000
247	S	S ^F →	52	9	0		270	450
248	N/ John	F	Ł	16	0	0	2700	
249	N N N		٤.	92	51	0	260	
250	N N N-S		٤.	66	13	0	340	
251		F	٤	88	39	0	75	
^a All we	ere prepared a	ccording to S	Sche	eme	3.			

Table 7. 6-CN-THQs with a Variation of R_3

			NC	$ \begin{array}{c} $					
Comp	Syn. Scheme	R ₁	R ₂	R ₃	% In 50 nM	<i>Pf</i> -PFT hibition 5 nM	at 0.5 nM	ED (n) 3D7	050 M) K1
252	4	N N	Br	HZ Z	94			120	
253	4	N N			93			120	
254	4	N N N	Xoltr	N N)	45	22	150	140
255	5	N	ON T	O=SUNN	0	0	0	>5000	3200
34	8		ON State	The second secon	96	79	12	650	650
256	4		N N		35	12	3	3400	3000

<5 nM. A good deal of the structure–activity data for the inhibition of Pf-PFT can be accounted for based on the structural consideration of one of the compounds, **162**, bound to mammalian PFT. In a companion study, we have carried out detailed

Table 8. 6-Phenyl-THQs^a



		N					
Compound	R ₁	R ₂		<i>Pf</i> -PFT Inhibitio 5 nM 0		EI (n) 3D7	D ₅₀ M) K1
257		H—ž	80	31	14	3500	>5000
258			88	38	10	>5000	>5000
259		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	86	29	10	5000	>5000
260		/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	98	84	27	3000	3700
261		1 Alexandre	95	74	14	>5000	3700
262		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	98	84	34	1500	
263		- the	99	89	22	640	475
264	_N	Br	97	89	21	380	360
265		a	97	91	28	750	950
266			99	87	37	375	350
267		∧ ^o ^z	97	73	23	381	395
268		of S O	99	91	29	400	700
269		×o LN~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	98	81	18	2400	750
270		N N N	32	0	0	450	350
271		Volume Vo	33	10	0	860	
272		Ĩ_Nŧ	90	38	0	460	150
273		F3C	88	46	0	4600	3500
274		N N N	79	26	0	3000	3700
275			99	90	9	450	380
276		- m	46	0	0	2900	1800
277		F_~~	98	81	12	300	500
278			98	84	32	270	450
279	<j< td=""><td>н—ફ</td><td>19</td><td>14</td><td>11</td><td>>5000</td><td>>5000</td></j<>	н—ફ	19	14	11	>5000	>5000
280	<}_j		11	6	6	>5000	3000
281		→o ^ĭ N [™]	22	15	0	2700	
282			2	0	0	>5000	>5000
283	S	× N × Z	10	1	4	3500	>5000
284			8	0	0	2800	2800

^a All were prepared according to Scheme 6.

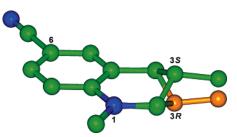
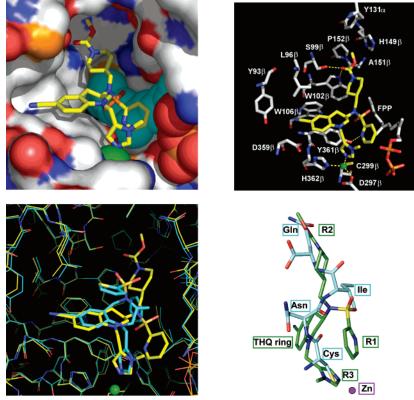
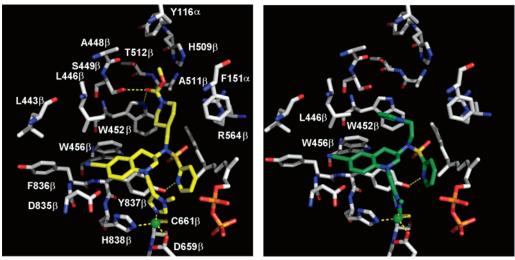

preclinical pharmacokinetic studies of our most potent Pf-PFT inhibitors.⁹ Together, these two studies provide the basis for further development of Pf-PFT inhibitors as novel antimalarial drugs.

 Table 9.
 6-Acyl-THQs^a

Compound	R ₄		f-PFT hibition 5 nM	at 0.5 nM		D ₅₀ M) K1
285	-→-H-5	25	0	4	>5000	>5000
286) →-H -ş	46	7	14	4000	2600
287	∠−H −ξ	66	17	5	2800	2300
288		35	2	0	>5000	
289	HO—ξ	80	29	0	3500	1425
290	H₃C−N−ξ	69	20	12	1200	ND
291	N - St	59	1	0	4600	ND
292	N	73	23	0	2800	2600


^a All were prepared according to Scheme 7.


Figure 2. Near coincidence of the sulfonamide nitrogen positions of the C3 enantiomers of THQ inhibitors like **162**. The figure shows the superposition of the two possible envelope conformations of the THQ ring, resulting in the positions of the exocyclic sulfonamide nitrogens being only 0.8 Å apart (only the equatorial conformations are shown; they are 2.7 kcal/mol more stable than the axial conformations). The R/S designation is specifically for the sulfonamide substitution. All figures of 3-dimensional molecular scenes were made with PyMOL (http://www.pymol.org).

Experimental Section

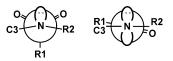

Synthesis of Compounds. General Methods. Unless otherwise indicated, all anhydrous solvents were commercially obtained and stored under nitrogen. Reactions were performed under an atmosphere of dry nitrogen in oven-dried glassware and were monitored for completeness by thin layer chromatography (TLC) using silica gel 60 F-254 (0.25 mm) plates with detection with UV light. ¹H NMR spectra were recorded on dilute solutions in CDCl₃, CD₃-OD, or DMSO-*d*₆ at 300 or 500 MHz. Chemical shifts are reported in parts per million (δ) downfield from tetramethylsilane (TMS). Coupling constants (*J*) are reported in Hz. Electrospray ionization mass spectra were acquired on an Bruker Esquire LC00066. Flash chromatography was carried out with silica gel (40–63 μ m). Preparative reverse phase HPLC was performed on an automated

Figure 3. Experimental binding mode of **162** to rat PFT (top left); molecular surface of rat-PFT (left; C, gray; N, blue; O, red; S, orange), with farnesyl-pyrophosphate (red, orange, and cyan) and Zn^{2+} (green) in CPK representation and **162** in stick model representation; equivalent all-stick model (top right); comparison of the binding modes of **162** (yellow carbons) and 3-benzyl-1-(3*H*-imidazol-4-ylmethyl)-4-(thiophene-2-sulfonyl)-2,3,4,5-tetrahydro-1*H*-benzo[*e*][1,4]diazepine-7-carbonitrile (cyan carbons, see ref 11 for the structure) to rat PFT (bottom left); superposition of **162** (green carbon atoms) and the C-terminal tetrapeptide fragment of the Rap2a peptide farnesyl acceptor substrate (cyan carbon atoms) as bound in PFT (bottom right; catalytic Zn²⁺ shown).

Figure 4. Predicted binding mode of **162** in the active site of Pf-PFT (top left); molecular surface of PFT (left; C, gray; N, blue; O, red; S, orange), with farnesyl-pyrophosphate (red, orange, and cyan) and Zn^{2+} (green); predicted binding mode of **55** in the active site of Pf-PFT (top right). Note how the R₂ pyrrole group is wedged between C4 of the THQ ring and Trp-452 β and Trp-456 β .

Figure 5. Comparison of the experimentally observed conformation of THQ PFTIs with a sulfonamide linker (left) and the conformation accessible to the analogous amides (right). The latter projects the R_1 group into a sterically poorly accessible area of PFT (not shown).

Varian Prep star system using a gradient of 20% MeOH to 100% MeOH (with 0.1% trifluoroacetic acid) over 30 min using a YMC S5 ODS column (20×100 mm, Waters, Inc.). All final compounds

(those tested on Pf-PFT and on parasites cultures) were purified by HPLC as above to single eluting peaks.

General Procedure for Synthesis of Compounds According to Scheme 1. Sulfonation. A solution of 6-cyano-1,2,3,4-tetrahydro-quinolin-3-ylamine hydrochloride **3** (5 mmol), sulfonyl chloride (10 mmol; for example, ref 16, and *N*,*N*-diisopropylethyl amine (15 mmol) in 25 mL of anhydrous CH₃CN was stirred at room temperature overnight. A light-colored precipitate of **4** was isolated by vacuum filtration. More often, product **4** was obtained by flash chromatography on a silica gel column, eluting with 50% ethyl acetate/hexane: yields 85–95%.

Table 10.	Potency	on Mammal	ian versus	Pf-PFT

cmpd	IC ₅₀ on mammalian PFT (nM)	Approximate IC ₅₀ on Pf-PFT ^a (nM)
81	10	50
65	3.8	2
84	440	50
55	1.7	0.2
62	3	0.5
6	7	2
226	5	20
151	7.8	2
152	6.5	4
162	3.2	0.4
158	16	4
167	25	3
165	5.5	0.5
134	2.6	0.5
129	1000	40
91	7.5	2
101	105	40
126	4.8	40
123	3.4	1

 a IC₅₀ values were estimated based on the % inhibition of Pf-PFT at 0.5, 5, and 50 nM inhibitor using the data in Tables 1–9.

1-Methyl-1*H***-imidazole-4-sulfonic Acid (6-Cyano-1,2,3,4-tetrahydro-quinolin-3-yl)-amide (4).** ¹H NMR (500 MHz, DMSO d_6) δ 7.80 (s, 1H), 7.78 (s,1H), 7.70 (br s, 1H), 7.25 (d, J = 8.7Hz, 1H), 7.20 (s, 1H), 6.81 (s, 1H), 6.51 (d, J = 8.6 Hz, 1H), 3.78 (s, 3H), 3.52–3.43 (m, 1H), 3.25–3.20 (m, 1H), 3.15–2.9 (m, 1H), 2.81–2.73 (m, 1H), 2.65–2.53 (m, 1H). MS *m*/*z* 318.5 (M + H⁺).

Pyridine-2-sulfonic Acid (6-Cyano-1,2,3,4-tetrahydro-quino-lin-3-yl)-amide (4). ¹H NMR (300 MHz, methanol- d_4) δ 8.51 (d, J = 7.2 Hz, 1H), 8.02 (td, J = 2.1, 7.8 Hz, 1H), 7.92 (dt, J = 1.8, 7.5 Hz, 1H), 7.47 (ddd, J = 1.2, 4.8, 7.5 Hz, 1H), 7.12 (dd, J = 2.1, 8.4 Hz, 1H), 7.0 (d, J = 1.8 Hz, 1H), 6.3 (d, J = 8.4 Hz, 1H), 5.87 (d, J = 7.8 Hz, 1H), 3.94–4.01 (m, 1H), 3.36 (dd, J = 2.7, 12 Hz, 1H), 3.25 (ddd, J = 2.1, 4.5, 12.3 Hz, 1H), 2.87 (dd J = 4.2, 16.5 Hz, 1H), 2.71 (ddd, J = 2.1, 4.8, 16.5 Hz, 1H). MS m/z 315 (M + H⁺).

Reductive Amination. A mixture of sulfonamide **4** (5 mmol), 1-methyl-1*H*-imidazole-5-carboxaldehyde (10 mmol),¹⁶ and 20 mL of 50% trifluoroacetic acid in dichloroethane was warmed at 50 °C under argon. After 2 h, triethylsilane (20 mmol) was added. After 48 h, the solvent was removed under reduced pressure, and the crude product was partitioned between methylene chloride and 1 N NaOH (45 mL). The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (3 × 25 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated. The crude residue was either recrystallized with dichloromethane or purified on a flash silica gel chromatography to afforded **5** in 45–50% yield.

1-Methyl-1*H***-imidazole-4-sulfonic Acid [6-Cyano-1-(3-methyl-3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]amide Trifluoro Acetate Salt (5). Recrystallized from CH₂Cl₂ afforded the product as a white solid (70%). ¹H NMR (300 MHz, methanol-d_4) \delta 8.89 (s, 1H), 7.82 (s, 1H), 7.72 (s, 1H), 7.41 (s, 1H), 7.36 (d, J = 8.2 Hz, 1H), 7.22 (s, 1H), 6.80 (d, J = 8.6 Hz, 1H), 4.80 (d, J = 16.80 Hz, 1H), 4.65 (d, J = 16.80 Hz, 1H), 3.87 (s, 3H), 3.85–3.79 (m, 1H), 3.78 (s, 3H), 3.55 (dd, J = 11.9 Hz, 1H), 3.42 (dd, J = 12.4 Hz, 1H), 3.05 (dd, J = 15.78 Hz, 1H), 2.71 (dd, J = 15.78 Hz, 1H). MS m/z 412.5 (M + H⁺).**

Pyridine-2-sulfonic Acid [6-Cyano-1-(3-methyl-3*H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-amide (5).** ¹H NMR (300 MHz, DMSO- d_6) δ 8.70 (d, J = 4.8 Hz, 1H), 8.14 (d, J = 6.6 Hz, 1H), 8.06 (dt, J = 1.8, 7.5 Hz, 1H), 7.99 (s, 1H), 7.67 (ddd, J = 1.2, 4.8, 7.8 Hz, 1H), 7.37 (dd, J = 2.1, 8.7 Hz, 1H), 7.27 (d, J = 1.8 Hz, 1H), 6.88 (s, 1H), 6.8 (d, J = 8.7 Hz, 1H), 4.62 (d, J = 16.5 Hz, 1H), 3.73–3.85 (m, 1H), 3.60 (s, 3H), 3.38 (dd, J = 2.4, 11.7 Hz, 1H), 3.17 (dd, J = 8.7, 12.9 Hz, 1H), 2.88 (dd, J = 4.2, 15.9 Hz, 1H), 2.70 (dd, J = 8.7, 15.9 Hz, 1H). MS m/z 409.3 (M + H⁺).

N-[6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-4-fluoro-benzenesulfonamide (5). ¹H NMR (500 MHz, methanol- d_4) δ 8.35 (s, 1H), 7.95–7.93 (m, 2H), 7.46 (s, 1H), 7.39 (d, J = 8.5 Hz, 1H), 7.35 (t, J = 8.0 Hz, 2H), 7.24 (s, 1H), 6.82 (d, J = 8.5 Hz, 1H), 4.82 (d, J = 17.0 Hz, 1H), 4.65 (d, J = 17.0 Hz, 1H), 3.95–3.85 (m, 4H), 3.69–3.65 (m, 1H), 3.55–3.45 (m, 1H), 2.97–2.96 (m, 1H), 2.71–2.61 (m, 1H). MS m/z 426.12 (M + H⁺).

N-Alkylation. To a suspension of **5** (5 mmol) and Cs₂CO₃ (9.8 mmol) in dry DMF (5 mL) was added the appropriate alkyl halide (5.4 mmol), and the mixture was stirred at room temperature overnight under argon. After addition of water (20 mL), the solution was extracted with ethyl acetate (3 × 20 mL). The organic layer was extracted with brine (3 × 10 mL). The combined organic layers were dried over MgSO₄ and evaporated under reduce pressure. The residue was purified by HPLC.

Pyridine-2-sulfonic Acid [6-Cyano-1-(3-methyl-3*H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(4-methanesulfonyl-benzyl)-amide (69).** ¹H NMR (300 MHz, methanol- d_4) δ 8.86 (s, 1H), 8.71 (d, J = 7.2 Hz, 1H), 8.10 (td, J = 1.5, 8.1 Hz, 1H), 7.99 (dt, J = 1.2, 8,1 Hz, 1H), 7.90 (d, J = 8.1 Hz, 2H), 7.69 (ddd, J = 1.2, 4.8, 7.5 Hz, 1H), 7.61 (d, J = 8.1 Hz, 2H), 7.33 (dd, J =2.1, 9.0 Hz, 1H), 7.28 (s, 1H), 7.25 (d, J = 2.1 Hz, 1H), 6.65 (d, J = 8.7 Hz, 1H), 4.79 (d, J = 17.1 Hz, 1H), 4.62 (d, J = 17.1 Hz, 1H), 4.39–4.59 (m, 3H), 3.8 (s, 3H), 3.55–3.62 (m, 1H), 3.42– 3.47 (m, 1H), 3.15 (s, 3H), 3.07–3.14 (m, 1H), 2.97 (dd, J = 4.5, 15.9 Hz, 1H). MS m/z 577.4 (M + H⁺).

6-{[[6-Cyano-1-(3-methyl-3*H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(pyridine-2-sulfonyl)-amino]-methyl}-pyridine-2-carboxylic Acid Methyl Ester (67). ¹H NMR (300 MHz, CDCl₃) \delta 8.78 (s, 1H), 8.63 (d, J = 7.0 Hz, 1H), 7.78–8.04 (m, 5H), 7.51–7.76 (m, 1H), 7.30–7.34 (m, 2H), 7.18 (s, 1H), 6.56 (d, J = 8.7 Hz, 1H), 4.76 (d, J = 17.1 Hz, 1H), 4.65 (d, J = 17.1 Hz, 1H), 4.47–4.61 (m, 3H), 3.96 (s, 3H), 3.85 (s, 3H), 3.54– 3.62 (m, 1H), 3.42–3.51 (m, 1H), 3.13 (dd, J = 11.1, 15 Hz, 1H), 2.91 (dd, J = 3.6, 15 Hz, 1H). MS m/z 558.3 (M + H⁺).**

4-{[[6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(pyridine-2-sulfonyl)-amino]-methyl}-piperidine-1-carboxylic Acid *tert*-Butyl Ester (6). ¹H NMR (300 MHz, methanol- d_4) δ 8.93 (s, 1H), 8.71 (d, J = 7.2 Hz, 1H), 8.05 (td, J = 1.8, 7.5 Hz, 1H), 8.01–8.02 (m, 1H), 7.66 (ddd, J = 1.2, 4.8, 7.5 Hz, 1H), 7.43 (s, 1H), 7.39 (dd, J = 1.5, 8.4 Hz, 1H), 7.33 (s, 1H), 6.80 (d, J = 9.7 Hz, 1H), 4.81 (d, J = 16.8 Hz, 1H), 4.68 (d, J = 16.8 Hz, 1H), 4.32–4.44 (m, 1H), 4.05–4.09 (m, 2H), 3.91 (s, 3H), 3.58–3.66 (m, 2H), 3.53–3.55 (m, 1H), 3.11–3.21 (m, 3H), 2.87–2.88 (m, 1H), 2.63–2.69 (m, 1H), 1.64–1.77 (m, 3H), 1.3 (s, 9H), 1.01–1.11 (m, 2H). MS *m*/z 606.6 (M + H⁺).

Pyridine-2-sulfonic Acid [6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(2-pyrazol-1-ylethyl)-amide (56). ¹H NMR (300 MHz, methanol- d_4) δ 8.92 (s, 1H), 8.73 (d, J = 6.9 Hz, 1H), 8.01–8.12 (m, 2H), 7.64–7.71 (m, 1H), 7.61 (d, J = 2.1 Hz, 1H), 7.50 (d, J = 1.5 Hz, 1H), 7.32– 7.38 (m, 2H), 7.21 (s, 1H), 6.79 (d, J = 8.7 Hz, 1H), 6.30 (t, J =2.1 Hz, 1H), 4.68 (d, J = 18.3 Hz, 1H), 4.60 (d, J = 18.3 Hz, 1H), 4.70 (t, J = 6.3 Hz, 2H), 4.25–4.35 (m, 1H), 3.83 (s, 3H), 3.74 (t, J = 6.3 Hz, 2H), 3.10–3.21 (m, 2H), 2.86 (dd, J = 12, 15.3 Hz, 1H), 2.58 (dd, J = 3.9, 15.3 Hz, 1H). MS *m*/*z* 503.4 (M + H⁺).

{**3-[[6-Cyano-1-(3-methyl-3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(pyridine-2-sulfonyl)-amino]-propyl}methyl-carbamic Acid Methyl Ester (48). ¹H NMR (300 MHz, methanol-d_4) \delta 8.94 (d, J = 0.9 Hz, 1H), 8.70 (d, J = 7.5 Hz, 1H), 8.08 (td, J = 1.8, 7.8 Hz, 1H), 8.0 (dt, J = 1.2, 7.8 Hz, 1H), 7.66 (ddd, J = 1.5, 4.8, 7.5 Hz, 1H), 7.43 (d, J = 1.2 Hz, 1H), 7.38 (dd, J = 2.1, 8.7 Hz, 1H), 7.33 (s, 1H), 6.81 (d, J = 8.7 Hz, 1H), 4.82 (d, J = 17.5 Hz, 1H), 4.62 (d, J = 17.5 Hz, 1H), 4.40–4.52 (m, 1H), 3.92 (s, 3H), 3.65 (s, 3H), 3.55–3.47 (m, 4H), 3.28–3.05 (m, 4H), 2.93 (s, 3H), 1.78–1.88 (m, 2H). MS m/z 538.4 (M + H⁺).** Pyridine-2-sulfonic Acid [6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(4-fluoro-benzyl)amide (71). ¹H NMR (300 MHz, methanol- d_4) δ 8.89 (s, 1H), 8.74 (d, J = 6.5 Hz, 1H), 8.09 (td, J = 1.8, 7.8 Hz, 1H), 8.0 (dt, J =1.2, 7.8 Hz, 1H), 7.67 (ddd, J = 1.5, 4.8, 7.5 Hz, 1H), 7.39–7.43 (m, 2H), 7.35 (dd, J = 2.1, 8.7 Hz, 1H), 7.33 (s, 1H), 7.25 (s, 1H), 7.01–7.07 (m, 2H), 6.75 (d, J = 8.7 Hz, 1H), 4.43–4.69 (m, 5H), 3.82 (s, 3H), 3.55–3.47 (m, 1H), 3.17–3.25 (m, 1H), 3.07 (dd, J =12, 15 Hz, 1H), 2.91 (dd, J = 3.9, 15 Hz, 1H). MS *m*/*z* 517.4 (M + H⁺).

Pyridine-2-sulfonic Acid [6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-[2-(2-trifluoromethyl-phenyl)-ethyl]-amide (76). ¹H NMR (300 MHz, methanol d_4) δ 8.87 (s, 1H), 8.74 (d, J = 4.5 Hz, 1H), 8.12 (td, J = 1.8, 7.8 Hz, 1H), 8.0 (dt, J = 1.2, 7.8 Hz, 1H), 7.63–7.71 (m, 2H), 7.58– 7.63 (m, 1H), 7.37–7.49 (m, 5H), 6.81 (d, J = 8.7 Hz, 1H), 4.92 (d, J = 17.7 Hz, 1H), 4.82 (d, J = 17.7 Hz, 1H), 4.50–4.56 (m, 1H), 3.98 (s, 3H), 3.55–3.47 (m, 4H), 3.18–3.31 (m, 3H), 3.02– 3.08 (m, 1H). MS m/z 581.4 (M + H⁺).

1-Methyl-1*H***-imidazole-4-sulfonic Acid [6-Cyano-1-(3-methyl-3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-[2-(2-fluoro-phenyl)-ethyl]-amide (113). ¹H NMR (300 MHz, methanol-d_4) \delta 8.93 (s, 1H), 7.76 (s, 1H), 7.73 (s, 1H), 7.51 (s, 1H), 7.38 (dd, J = 2.1, 8.7 Hz, 1H), 7.23–7.32 (m, 3H), 7.10–7.17 (m, 2H), 6.84 (d, J = 8.6 Hz, 1H), 4.92 (d, J = 17.7 Hz, 1H), 4.82 (d, J = 17.7 Hz, 1H), 4.48–4.50 (m, 1H), 4.07 (s, 3H), 3.82 (s, 3H), 3.35–3.57 (m, 4H), 3.16–3.29 (m, 3H), 2.92–3.00 (m, 1H). MS m/z 534.4 (M + H⁺).**

1-Methyl-1*H***-imidazole-4-sulfonic Acid [6-Cyano-1-(3-methyl-3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-[2-(4fluoro-phenyl)-ethyl]-amide (112). ¹H NMR (300 MHz, acetoned_6) \delta 8.93 (s, 1H), 7.75 (s, 1H), 7.74 (s, 1H), 7.49 (s, 1H), 7.38 (dd, J = 2.1, 8.7 Hz, 1H), 7.32 (s, 1H) 7.22–7.25 (m, 2H), 7.01– 7.07 (m, 2H), 6.93 (d, J = 8.6 Hz, 1H), 4.93 (d, J = 16.8 Hz, 1H), 4.80 (d, J = 16.8 Hz, 1H), 4.38–4.46 (m, 1H), 4.07 (s, 3H), 3.82 (s, 3H), 3.34–3.54 (m, 4H), 3.07 (dd, J = 12, 15 Hz, 1H), 2.98 (t, J = 8.1 Hz, 2H) 2.90 (dd, J = 3.7, 15.2 Hz, 1H). MS** *m***/***z* **534.4 (M + H⁺).**

1-Methyl-1*H***-imidazole-4-sulfonic Acid [6-Cyano-1-(3-methyl-3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(4fluoro-benzyl)-amide (109). ¹H NMR (300 MHz, methanol-d_4) \delta 8.90 (s, 1H), 7.81 (s, 1H), 7.73 (s, 1H), 7.36–7.42 (m, 3H), 7.33 (s, 1H), 7.27 (s, 1H), 7.10–7.17 (m, 2H), 6.84 (d, J = 8.6 Hz, 1H), 4.28–4.65 (m, 5H), 3.87 (s, 3H), 3.80 (s, 3H), 3.34–3.39 (m, 1H), 3.18–3.26 (m, 1H), 3.07 (dd, J = 11.4, 15.3 Hz, 1H), 2.87 (dd, J = 3.7, 15.2 Hz, 1H). MS** *m***/***z* **520.4 (M + H⁺).**

1-Methyl-1*H***-imidazole-4-sulfonic Acid [6-Cyano-1-(3-methyl-3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(4ethanesulfonyl-benzyl)-amide (132). ¹H NMR (300 MHz, methanold_4) \delta 8.87 (s, 1H), 7.87 (d, J = 8.1 Hz, 2H), 7.85 (s, 1H), 7.77 (s, 1H), 7.62 (d, J = 8.1 Hz, 2H), 7.34 (dd, J = 1.8, 8.7 Hz, 1H), 7.25 (d, J = 1.8 Hz, 1H), 6.68 (d, J = 8.7 Hz), 4.75 (d, 2H), 4.53–4.55 (m, 1H), 4.51 (d, J = 17.7 Hz, 1H), 4.45 (d, J = 17.7 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.10–3.25 (m, 6H), 2.95–3.05 (m, 1H), 1.21–1.25 (t, 3H). MS** *m***/z 594.5 (M + H⁺).**

1-Methyl-1*H***-imidazole-4-sulfonic Acid (4-Benzenesulfonylbenzyl)-[6-cyano-1-(3-methyl-3***H***-imidazol-4-ylmethyl)-1,2,3,4tetrahydro-quinolin-3-yl]-amide (145). ¹H NMR (300 MHz, methanol-d_4) \delta 8.89 (s, 1H), 7.89–8.10 (m, 4H), 7.87 (d, J = 8.1 Hz, 2H), 7.77 (s, 1H), 7.50–7.72 (m, 5H), 7.34 (dd, J = 1.8, 8.7 Hz, 1H), 7.25 (d, J = 1.8 Hz, 1H), 6.68 (d, J = 8.7 Hz, 1H), 4.75 (m, 2H), 4.53–4.55 (m, 1H), 4.51 (d, J = 17.7 Hz, 1H), 4.45 (d, J = 17.7 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.40–3.45 (m, 2H), 2.95–3.05 (m, 1H). MS m/z 642.6 (M + H⁺).**

1-Methyl-1*H***-imidazole-4-sulfonic Acid [6-Cyano-1-(3-methyl-3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(4,4dioxo-3,4-dihydro-2***H***-4\lambda6-benzo[1,4]oxathiin-7-ylmethyl)amide (146). ¹H NMR (300 MHz, methanol-d_4) \delta 8.90 (s, 1H), 7.85 (s, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.45 (s, 1H), 7.30 (s, 1H), 7.28 (dd, J = 1.8, 8.7 Hz, 1H), 7.25 (d, J = 1.8 Hz, 1H), 7.15 (dd, J = 8.7, 1.8 Hz, 1H), 7.08 (d, J = 2.1 Hz, 1H), 6.68 (d, J = 8.7** Hz, 1H), 4.48–4.52 (m, 2H), 4.51 (d, J = 17.7 Hz, 1H), 4.45 (d, J = 17.7 Hz, 1H), 3.90 (s, 3H), 3.80 (s, 3H), 3.55–3.60 (m, 2H), 3.40–3.55 (m, 2H), 2.95–3.05 (m, 1H), 2.68–2.75 (m, 1H). MS m/z 608.4 (M + H⁺).

4-{[[6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(1,5-dimethyl-1*H*-imidazole-4-sulfonyl)amino]-methyl}-piperidine-1-carboxylic Acid Methyl Ester (234). ¹H NMR (300 MHz, methanol- d_4) δ 8.93 (s, 1H), 7.73 (s, 1H), 7.40 (s, 1H), 7.37 (dd, J = 3.0, 9.0 Hz, 1H), 7.32 (d, J = 1.8 Hz, 1H), 6.79 (d, J = 9 Hz, 1H), 4.81 (d, J = 18.0 Hz, 1H), 4.68 (d, J = 18.0 Hz, 1H), 4.32–4.42 (m, 1H), 4.08–4.18 (m, 2H), 3.92 (s, 3H), 3.67 (s, 3H), 3.68 (s, 3H), 3.51–3.58 (m, 2H), 2.98–3.17 (m, 3H), 2.73–2.87 (m, 3H), 2.48 (s, 3H), 1.69–1.85, (m, 3H), 1.01–1.27 (m, 2H). MS m/z 581.6 (M + H⁺).

4-{[[6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3yl]-(1,5-dimethyl-1*H*-imidazole-4-sulfonyl)amino]-methyl}-piperidine-1-carboxylic Acid *tert*-Butyl Ester (235). ¹H NMR (300 MHz, methanol- d_4) δ 8.93 (s, 1H), 7.73 (s, 1H), 7.43 (d, J = 1.8 Hz, 1H), 7.37 (dd, J = 3, 9 Hz, 1H), 7.32 (s, 1H), 6.79 (s, 1H), 4.81 (d, J = 18.0 Hz, 1H), 4.68 (d, J = 18.0 Hz, 1H), 4.33–4.40 (m, 1H), 4.06–4.11 (m, 2H), 3.92 (s, 3H), 3.67 (s, 3 H), 3.53–3.58 (m, 2H), 3.09–3.17 (m, 3 H), 2.64–2.81 (m, 3H), 2.48 (s, 3H), 1.63–1.81 (m, 3H), 1.4 (s, 9 H), 0.90–1.13 (m, 2H). MS *m*/z 623.6 (M + H⁺).

1-Methyl-1*H***-imidazole-4-sulfonic Acid [6-Cyano-1-(3-methyl-3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-[2-(2-oxo-pyrrolidin-1-yl)-ethyl]-amide (117). ¹H NMR (300 MHz, methanol-d_4) δ 8.91 (s, 1H), 7.30–7.45 (m, 2H), 7.17–7.24 (m, 1H), 7.12 (s, 1H), 6.82 (d, J = 9.0 Hz, 1H), 6.52 (d, J = 9.0 Hz, 1H), 4.28–4.40 (m, 2H), 3.93 (s, 3H), 3.80 (s, 3H), 3.66–3.73 (m, 1H), 3.51–3.63 (m, 2H), 3.40–3.48 (m, 2H), 3.03–3.21 (m, 2H), 2.78–2.93 (m, 2H), 2.62–2.76 (m, 2H), 2.38 (t, J = 6.0 Hz, 2H), 2.07 (t, J = 6.0 Hz, 2H). MS m/z 523.3 (M + H⁺).**

1,5-Dimethyl-1*H***-imidazole-4-sulfonic Acid [6-Cyano-1-(3-methyl-3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(4-methanesulfonyl-benzyl)-amide (236).** ¹H NMR (300 MHz, methanol- d_4) δ 8.85 (s 1H), 7.91 (d, J = 9.0 Hz, 2H), 7.77 (s, 1H), 7.60 (d, J = 9.0 Hz, 2H), 7.35 (d, J = 9.0 Hz, 2H), 7.29 (s, 1H), 6.68 (d, J = 9.0 Hz, 1H), 4.40–4.71 (m, 5H), 3.83 (s, 3H), 3.68 (s, 3H), 3.45–3.55 (m, 2H), 3.17 (s, 3H), 2.88–3.02 (m, 2H), 2.42 (s, 3H). MS *m*/*z* 594.5 (M + H⁺).

1,5-Dimethyl-1*H***-imidazole-4-sulfonic** Acid [6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(4-ethanesulfonyl-benzyl)-amide (237). ¹H NMR (300 MHz, methanol- d_4) δ 8.88 (s 1H), 7.85 (d, J = 9.0 Hz, 2H), 7.78 (s, 1H), 7.60 (d, J = 9.0 Hz, 2H), 7.35 (d, J = 9.0 Hz, 2H), 7.29 (s, 1H), 6.68 (d, J = 9.0 Hz, 1H), 4.40–4.76 (m, 5H), 3.97 (s, 3H), 3.82 (s, 3H), 3.45–3.55 (m, 2H), 3.15–3.30 (m, 2H), 2.88–3.05 (m, 2H), 2.48 (s, 3H), 1.22 (t, J = 9.6 Hz, 3H). MS *m*/*z* 608.4 (M + H⁺).

1,5-Dimethyl-1*H***-imidazole-4-sulfonic Acid (5-Bromo-2-fluorobenzyl)-[6-cyano-1-(3-methyl-3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-amide (238).** ¹H NMR (300 MHz, methanol- d_4) δ 8.92 (s, 1H), 7.76 (s, 1H), 7.53 (m, 1H), 7.31–7.45 (m, 3H), 7.28 (s, 1H), 6.99 (d, J = 9.0 Hz, 1H), 6.72 (d, J = 9.0 Hz, 1H), 4.42–4.75 (m, 5H), 3.89 (s, 3H), 3.67 (s, 3H), 3.50–3.62 (m, 2H), 2.95–3.10 (m, 2H), 2.40 (s, 3H). MS *m*/*z* 612.8 (M + H⁺).

1-Methyl-1*H***-imidazole-4-sulfonic Acid [6-Cyano-1-(3-methyl-3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(4methanesulfonyl-benzyl)-amide (131). ¹H NMR (300 MHz, methanol-d_4) \delta 9.0 (s 1H), 7.95–7.85 (m, 3H), 7.60 (d, J = 8.7 Hz, 2H), 7.35 (t, J = 7.8 Hz, 3H), 7.29 (s, 1H), 6.70 (d, J = 8.7 Hz, 1H), 4.60–4.40 (m, 4H), 4.40–4.30 (m, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.40–3.30 (m, 2H), 3.0–2.90 (m, 1H), 2.83–2.75 (m, 1H), 2.50 (s, 3H). MS m/z 580.5 (M + H⁺).**

1-Methyl-1*H***-imidazole-4-sulfonic Acid [6-Cyano-1-(3-methyl-3***H***-imidazol-4-yl-methyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(3methoxy-propyl)-amide (91).** ¹H NMR (300 MHz, methanol-*d*₄) δ 8.92 (s, 1H), 7.80 (s, 1H), 7.75 (s, 1H), 7.43 (s, 1H), 7.39 (d, *J* = 8.7 Hz, 1H), 7.32 (s, 1H), 6.81 (d, *J* = 8.7 Hz, 1H), 4.78 (d, *J* = 16.7 Hz, 1H), 4.69 (d, J = 16.7 Hz, 1H), 4.45–4.38 (m, 1H), 3.92 (s, 3H), 3.81 (s, 3H), 3.59–3.51 (m, 2H), 3.43–3.38 (m, 2H), 3.32 (s, 3H), 3.28–3.20 (m, 2H), 3.12–3.07 (m, 1H), 2.85 (dd, J = 3.3, 15.3 Hz, 1H), 1.96–1.85 (m, 4H). MS m/z 484.5 (M + H⁺).

1-Methyl-1*H***-imidazole-4-sulfonic Acid [6-Cyano-1-(3-methyl-3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(5-trifluoromethyl-furan-2-ylmethyl)-amide (108). ¹H NMR (300 MHz, methanol-d_4) \delta 8.90 (s, 1H), 7.72 (s, 1H), 7.60 (s, 1H), 7.42–7.36 (m, 2H), 7.40 (s, 1H), 6.90 (s, 1H), 6.70 (d,** *J* **= 8.5 Hz, 1H), 6.50 (s, 1H), 4.75–4.45 (m, 5H), 3.90 (s, 3H), 3.75 (s, 3H), 3.50–3.40 (m, 2H), 3.20–3.12 (m, 1H), 2.89 (dd,** *J* **= 3.2, 15.1 Hz, 1H). MS** *m***/***z* **560.4 (M + H⁺).**

1-Methyl-1*H*-imidazole-4-sulfonic Acid [6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-[4-(1,3-dioxo-1,3-dihydro-isoindol-2-yloxy)-butyl]-amide (143). ¹H NMR (300 MHz, methanol- d_4) δ 8.90 (s 1H), 7.78–7.65 (m, 6H), 7.60 (s, 1H), 7.40–7.30 (m, 2H), 6.80 (d, J = 8.7 Hz, 1H), 4.85 (d, J = 16.7 Hz, 1H), 4.75 (d, J = 16.7 Hz, 1H), 4.50–4.40 (m, 1H), 4.20 (t, 2H), 4.0 (s, 3H), 3.80 (s, 3H), 3.70–3.55 (m, 2H), 3.40–3.20 (m, 3H), 2.89 (dd, J = 3.2, 15.1 Hz, 1H), 1.96–1.70 (m, 4H). MS (EI) m/z 629.6 (M + H⁺).

General Procedure for the Synthesis of Compounds According to Scheme 2. Compound 6 (400 mg) was dissolved in dichloromethane (5 mL), and trifluoroacetic acid (1 mL) was added. The reaction mixture was stirred for 45 min. Solvent was removed in vacuo with care to be sure that all trifluoroacetic acid was removed. The residue was used without further purification.

The residue (0.28 mmol) was dissolved in dichloromethane (2.5 mL) together with diisopropylethyl amine (0.33 mmol). To this solution was added the appropriate chloroformate, isocyanate, or sulfonyl chloride (0.30 mmol) dropwise at 0 °C, and the mixture was stirred for 1 h. Aqueous NH₄OH (1 mL) was added to the reaction mixture. After being stirred for an additional 15 min, the mixture was diluted with ethyl acetate (50 mL) and washed with brine. The organic layer was dried over MgSO₄ and evaporated under reduced pressure to yield the crude product, which was purified by preparative HPLC. The appropriate fractions were combined and concentrated in vacuo to give the corresponding derivatives as the trifluoroacetate salt.

Pyridine-2-sulfonic Acid [6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-piperidin-4-ylmethylamide (54). ¹H NMR (300 MHz, methanol- d_4) δ 8.93 (s, 1H), 8.71 (d, J = 7.2 Hz, 1H), 8.07 (td, J = 1.5, 7.5 Hz, 1H), 8.01 (dt, J =0.9, 7.8 Hz, 1H), 7.66 (ddd, J = 1.5, 4.8, 7.5 Hz, 1H), 7.40 (s, 1H), 7.37 (d, J = 2.1 Hz, 1H), 7.33 (s, 1H), 6.79 (d, J = 8.7 Hz, 1H), 4.80 (d, J = 17.4 Hz, 1H), 4.65 (d, J = 17.4 Hz, 1H), 4.33– 4.44 (m, 1H), 3.91 (s, 3H), 3.63 (t, J = 10.8 Hz, 1H), 3.40–3.54 (m, 4H), 3.14–3.23 (m, 2H), 2.82–3.02 (m, 3H), 1.97–2.09 (m, 3 H), 1.30–1.52 (m, 2H). MS m/z 506.5 (M + H⁺).

4-{[[6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(pyridine-2-sulfonyl)-amino]-methyl}-piperidine-1-carboxylic Acid Methyl Ester (162). ¹H NMR (300 MHz, methanol- d_4) δ 8.94 (d, J = 0.9 Hz, 1H), 8.70 (d, J = 7.5Hz, 1H), 8.08 (td, J = 1.8, 7.8 Hz, 1H), 8.0 (dt, J = 1.2, 7.8 Hz, 1H), 7.66 (ddd, J = 1.5, 4.8, 7.5 Hz, 1H), 7.43 (d, J = 1.2 Hz, 1H), 7.38 (dd, J = 2.1, 8.7 Hz, 1H), 7.33 (s, 1H), 6.81 (d, J = 8.7Hz, 1H), 4.84 (d, J = 17.7 Hz, 1H), 4.68 (d, J = 17.7 Hz, 1H), 4.38–4.51 (m, 1H), 4.08–4.16 (m, 2H), 3.92 (s, 3H), 3.65 (s, 3H), 3.51–3.62 (m, 2H), 3.21–3.26 (m, 2H), 3.11–3.18 (m, 1H), 2.79– 2.87 (m, 3H), 1.68–1.88 (m, 3H), 1.05–1.17 (m, 2H). MS m/z564.4 (M + H⁺).

4-{[[6-Cyano-1-(3-methyl-3*H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(pyridine-2-sulfonyl)-amino]-methyl}-piperidine-1-carboxylic Acid Isobutyl Ester (167). ¹H NMR (300 MHz, methanol-d_4) \delta 8.94 (d, J = 0.9 Hz, 1H), 8.70 (d, J = 7.5 Hz, 1H), 8.08 (td, J = 1.8, 7.8 Hz, 1H), 8.0 (dt, J = 1.2, 7.8 Hz, 1H), 7.66 (ddd, J = 1.5, 4.8, 7.5 Hz, 1H), 7.43 (d, J = 1.2 Hz, 1H), 7.38 (dd, J = 2.1, 8.7 Hz, 1H), 7.33 (s, 1H), 6.81 (d, J = 8.7 Hz, 1H), 4.84 (d, J = 17.7 Hz, 1H), 4.68 (d, J = 17.7 Hz, 1H), 4.38–4.51 (m, 1H), 4.08–4.16 (m, 2H), 3.92 (s, 3H), 3.85 (d, J =** 6.6 Hz, 2H), 3.51–3.62 (m, 2H), 3.21–3.26 (m, 2H), 3.11–3.18 (m, 1H), 2.79–2.87 (m, 3H), 1.91–1.99 (m, 1H), 1.68–1.88, (m, 3H), 1.05–1.17 (m, 2H), 0.95 (d, J = 6.9 Hz, 6H). MS m/z 606.5 (M + H⁺).

Pyridine-2-sulfonic Acid [6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-[1-(2,2-dimethylpropionyl)-piperidin-4-ylmethyl]-amide (150). ¹H NMR (500 MHz, methanol- d_4) δ 8.94 (s, 1H), 8.71 (d, J = 6 Hz, 1H), 8.09 (td, J = 1, 8 Hz, 1H), 8.01 (dt, J = 1, 8 Hz, 1H), 7.66 (ddd, J =1.5, 5, 7.5 Hz, 1H), 7.43 (s, 1H), 7.38 (dd, J = 2, 8 Hz, 1H), 7.33 (s, 1H), 6.82 (d, J = 9 Hz, 1H), 4.82 (d, J = 18.5 Hz, 1H), 4.69 (d, J = 18.5 Hz, 1H), 4.38–4.45 (m, 3 H), 3.92 (s, 3H), 3.61–3.66 (m, 1H), 3.52–3.55 (m, 1H), 3.15–3.30 (m, 3H), 2.76–2.88 (m, 3H), 1.93–1.97 (m, 1H), 1.77–1.85 (m, 2H), 1.27 (s, 9H), 1.07– 1.15 (m, 2H). MS m/z 590.6 (M + H⁺).

Pyridine-2-sulfonic Acid [6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-[1-(3,3,3-trifluoropropionyl)-piperidin-4-ylmethyl]-amide (155). ¹H NMR (300 MHz, methanol- d_4) δ 8.85 (s, 1H), 8.67 (d, J = 6 Hz, 1H), 8.09 (td, J = 1, 8 Hz, 1H), 8.01 (dt, J = 1, 8 Hz, 1H), 7.60 (m, 1H), 7.43 (s, 1H), 7.38 (d, J = 8 Hz, 1H), 7.23 (s, 1H), 6.82 (d, J = 9Hz, 1H), 4.82 (d, J = 18.5 Hz, 1H), 4.69 (d, J = 18.5 Hz, 1H), 4.38–4.45 (m, 3 H), 3.92 (s, 3H), 3.61–3.66 (m, 1H), 3.50–3.52 (m, 1H), 3.12–3.28 (m, 5H), 2.71–2.81 (m, 3H), 1.93–1.97 (m, 1H), 1.72–1.80 (m, 2H), 1.03–1.12 (m, 2H). MS *m*/*z* 616.4 (M + H⁺).

Pyridine-2-sulfonic Acid [6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(1-methanesulfonyl-piperidin-4-ylmethyl)-amide (177). ¹H NMR (300 MHz, methanol- d_4) δ 8.93 (d, J = 1.2 Hz, 1H), 8.71 (d, J = 7.5 Hz, 1H), 8.08 (dt, J = 1.8, 7.8 Hz, 1H), 8.02 (td, J = 1.2, 8.1 Hz, 1H), 7.66 (ddd, J = 1.5, 4.8, 7.5 Hz, 1H), 7.42 (d, J = 1.5 Hz, 1H), 7.38 (dd, J = 2.1, 8.7 Hz, 1H), 7.33 (s, 1H), 6.80 (d, J = 8.7 Hz, 1H), 4.8 (d, J = 17.7 Hz, 1H), 4.68 (d, J = 17.7 Hz, 1H), 4.37–4.48 (m, 1H), 3.91 (s, 3H), 3.69–3.72 (m, 2H), 3.58–3.65 (m, 1H), 3.49– 3.55 (m, 1H), 3.22–3.28 (m, 2H), 3.13–3.20 (m, 1H), 2.85–2.89 (m, 1H), 2.82 (s, 3H), 2.64–2.74 (m, 2H), 1.75–1.93 (m, 3H), 1.17–1.35 (m, 2H). MS m/z 584.4 (M + H⁺).

Pyridine-2-sulfonic Acid (1-Benzenesulfonyl-piperidin-4-yl-methyl)-[6-cyano-1-(3-methyl-3H-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-amide (180). ¹H NMR (300 MHz, methanol- d_4) δ 8.93 (d, J = 1.2 Hz, 1H), 8.71 (d, J = 7.5 Hz, 1H), 8.08 (dt, J = 1.8, 7.8 Hz, 1H), 8.02 (td, J = 1.2, 8.1 Hz, 1H), 7.56–7.78 (m, 6H), 7.32 (s, 1H), 7.29 (d, J = 8.7 Hz, 1H), 7.21 (s, 1H), 6.80 (d, J = 8.7 Hz, 1H), 4.75 (d, J = 17.7 Hz, 1H), 4.60 (d, J = 17.7 Hz, 1H), 4.37–4.48 (m, 1H), 3.91 (s, 3H), 3.69–3.72 (m, 2H), 3.58–3.65 (m, 1H), 3.49–3.55 (m, 1H), 3.22–3.28 (m, 2H), 3.13–3.20 (m, 1H), 2.85–2.89 (m, 1H), 2.64–2.74 (m, 2H), 1.75–1.93 (m, 3H), 1.17–1.35 (m, 2H). MS *m*/z 646.5 (M + H⁺).

4-{[[6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(pyridine-2-sulfonyl)-amino]-methyl}-piperidine-1-carboxylic Acid Ethylamide (170). ¹H NMR (300 MHz, methanol- d_4) δ 8.93 (s, 1H), 8.70 (d, J = 7.2 Hz, 1H), 8.04– 8.10 (m, 1H), 8.99–8.02 (m, 1H), 7.66 (ddd, J = 1.5, 4.8, 7.5 Hz, 1H), 7.42 (s, 1H), 7.39 (dd, J = 2.1, 8.4 Hz, 1H), 7.33 (s, 1H), 6.82 (d, J = 8.7 Hz, 1H), 4.8 (d, J = 17.7 Hz, 1H), 4.69 (d, J = 17.7 Hz, 1H), 4.38–4.47 (m, 1H), 3.98–4.02 (m, 2H), 3.91 (s, 3H), 3.62 (t, J = 10.8 Hz, 1H), 3.54–3.56 (m, 1H), 3.12–3.29 (m, 5H), 2.81–2.90 (m, 1H), 2.66–2.74 (m, 2H), 1.65–1.87 (m, 3H), 1.17–1.18 (m, 2H), 1.10 (t, J = 7.2 Hz, 3H). MS *m*/*z* 577.5 (M + H⁺).

[2-(4-{[[6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4tetrahydro-quinolin-3-yl]-(pyridine-2-sulfonyl)-amino]-methyl}piperidin-1-yl)-2-oxo-ethyl]-carbamic Acid *tert*-Butyl Ester (157). A mixture of 54 (22 mg, 0.044 mmol), Boc-Gly-OH (9.2 mg, 0.051 mmol), dicyclohexylcarbodiimide (10 mg, 0.051 mmol), 4-dimethylamino-pyridine (2 mg), and dichloromethane (5 mL) was stirred at room temperature for 18 h. Upon completion of reaction, the mixture was filtered to remove dicyclohexylurea, and the residue was washed with dichloromethane (5 mL). The filtrate and washings were combined and evaporated to dryness *in vacuo*. The residue was purified by HPLC to afford 15 mg (54%) of **157** as the trifluoroacetate salt. ¹H NMR (500 MHz, methanol- d_4) δ 8.94 (s, 1H), 8.71 (d, J= 7.5 Hz, 1H), 8.06–8.12 (m, 1H), 7.88–8.01 (m, 1H), 7.65–7.68 (m, 1H), 7.42 (s, 1H), 7.38 (dd, J = 1.5, 8.5 Hz, 1H), 7.33 (s, 1H), 6.81 (d, J = 8 Hz, 1H), 4.81 (d, J = 18 Hz, 1H), 4.69 (d, J = 18 Hz, 1H), 4.35–4.50 (m, 3H), 3.92 (s, 3H), 3.80–3.92 (m, 2H), 3.59–3.63 (m, 1H), 3.52–3.54 (m, 1H), 3.13–3.33 (m, 3H), 3.00–3.12 (m, 1H), 2.82–2.88 (m, 1H), 2.57–2.65 (m, 1H), 1.72–1.95 (m, 3H), 1.46 (s, 9 H), 1.06–1.25 (m, 2H). MS m/z 663.6 (M + H⁺).

General Procedure for the Synthesis of Compounds According to Scheme 3. To a solution of 6-cyano-1,2,3,4-tetrahydroquinolin-3-ylamine hydrochloride 3 (4.18 g, 20 mmol) and *N*,*N*diisopropylethyl amine (5.1 g, 40 mmol) in 25 mL of anhydrous dichloromethane was added benzyl chloroformate (5.1 g, 30 mmol) at 0 °C. After stirring at ambient temperature for 5 h, the reaction mixture was quenched with water. The mixture was partitioned between water and ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, and evaporated under reduce pressure. Purification by flash chromatography gave 9 (5.49 g 89%) as a white foam.

To a solution of **9** (5 g, 16.2 mmol) and trifluoroacetic acid (14 mL) in 20 mL of dichloroethane (14 mL) at room temperature under nitrogen was added 3-methyl-3*H*-imidazole-4-carboxaldehyde (5.37 g, 48.6 mmol). The mixture was stirred for 1 h at room temperature, and then triethylsilane (7.75 mL, 48.6 mmol) was added dropwise. The mixture was heated in an oil bath at 45 °C for 15 h. The volatile materials were removed under vacuum. The reaction mixture was diluted with ethyl acetate and washed with aqueous NaHCO₃, water, and brine solution. The organic layer was dried over MgSO₄, filtered, and concentrated. The crude residue was purified on a flash silica column to afford **10** (3.1 g, 47%).

A solution of [6-cyano-1-(3-methyl-3H-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-carbamic acid benzyl ester **10** (1.3 g, 3 mmol), 15 mL methanol, and 10% Pd/C catalyst (0.5 g) was stirred under atmospheric pressure of hydrogen for 4 h. The catalyst was filtered off, and the filtrate was concentrated to give **11** as an off-white foam (790 mg, 92%).

To a suspension of **11** (0.55 g, 0.2 mmol) and Cs_2CO_3 (1.34 g, 0.4 mmol) in dry DMF (3 mL) was added the appropriate alkyl halide (0.2 mmol), and the mixture was stirred at room temperature overnight under argon. After addition of water (10 mL), the solution was extracted with ethyl acetate (3 × 10 mL). The organic layer was extracted with brine (3 × 10 mL). The combined organic layers were dried over MgSO₄ and evaporated under reduce pressure. The residue was purified by HPLC. Appropriate fractions were collected, and the pure product **12** was obtained as the TFA salt.

Compound **12** (0.1 mmol) dissolved in dichloromethane (1.5 mL) together with *N*,*N*-diisopropylethyl amine (0.2 mmol) was cooled to 0 °C. Acetyl chloride or sulfonyl chloride (0.1.2 mmol) dissolved in dichloromethane (0.5 mL) was added dropwise, and the mixture was stirred for 1 h. Aqueous NH₄OH (1 mL) was added to the reaction mixture. After being stirred for an additional 15 min, the reaction mixture was diluted with ethyl acetate (50 mL) and washed with brine solution. The organic layer was dried over MgSO₄ and evaporated under reduced pressure, yielding the crude amide **13**, which was purified by HPLC. The appropriate fractions were combined, concentrated in vacuo, and lyophilized to give the corresponding compounds as the trifluoroacetate salt.

(6-Cyano-1,2,3,4-tetrahydro-quinolin-3-yl)-carbamic Acid Benzyl Ester (9). ¹H NMR (300 MHz, methanol- d_4) δ 7.02–7.15 (m, 7H), 6.58 (d, J = 8 Hz, 1H), 5.09 (s, 2H), 3.94–3.98 (m, 1H), 3.45 (m, 1H), 3.20 (m, 1H), 2.99 (dd J = 4.2, 16.5 Hz, 1H), 2.74 (ddd, J = 2.1, 4.8, 16.5 Hz, 1H). MS m/z 308.2 (M + H⁺).

[6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-carbamic Acid Benzyl Ester (10). ¹H NMR (300 MHz, CD₃OD) δ 7.61 (s, 1H), 7.31–7.38 (m, 7H) 6.87 (d, *J* = 8.7 Hz, 1H), 6.83 (s, 1H), 5.07 (s, 2H), 4.59 (s, 2H), 4.00– 4.02 (m, 1H), 3.64 (s, 3H), 3.36 (dd, *J* = 2.7, 12 Hz, 1H), 3.23 (dd, J = 4.5, 12.1 Hz, 1H), 2.03 (dd J = 5.1, 15.9 Hz, 1H), 2.71 (dd, J = 4.8, 16.2 Hz, 1H). MS m/z 402.2 (M + H⁺).

3-Amino-1-(3-methyl-3*H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinoline-6-carbonitrile (11).** ¹H NMR (300 MHz, methanol- d_4) δ 7.61 (s, 1H), 7.32 (dd, J = 2.1, 8.4 Hz, 1H), 7.29 (s, 1H), 6.83 (d, J = 8.4 Hz, 1H), 6.80 (s, 1H), 4.64 (d, J = 16.5 Hz, 1H), 4.58 (d, J = 16.5 Hz, 1H), 3.57 (s, 3H), 3.42 (dd, J = 2.4, 11.7 Hz, 1H), 3.35 (m, 1H), 3.21 (m, 1H), 2.98 (dd, J = 4.1, 16.5 Hz, 1H), 2.67 (dd, J = 4.8, 16.4 Hz, 1H). MS *m*/*z* 268.3 (M + H⁺).

3-(2-Fluoro-benzylamino)-1-(3-methyl-3H-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinoline-6-carbonitrile Trifluoroacetate Salt (12). ¹H NMR (300 MHz, methanol- d_4) δ 8.83 (s, 1H), 7.20–7.48 (m, 5H), 7.12–7.17 (m, 2H), 6.82 (d, J = 8.5 Hz, 1H), 4.74 (d, J = 17.4 Hz, 1H), 4.60 (d, J = 17.4 Hz, 1H), 4.35 (s, 2H), 3.88 (m, 1H), 3.75 (s, 3H), 3.74 (dd, J = 2.1, 14.1 Hz, 1H), 3.49 (dd, J = 4.8, 14.5 Hz, 1H), 3.31 (dd, J = 4.5, 16.5 Hz, 1H), 2.67 (dd, J = 6.6, 16.5 Hz, 1H). MS m/z 268.3 (M + H⁺).

4-{[6-Cyano-1-(3-methyl-3*H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-ylamino]-methyl}-piperidine-1-carboxylic Acid Methyl Ester (12).** ¹H NMR (300 MHz, methanol- d_4) δ 8.87 (s, 1H), 7.43 (s, 1H), 7.38 (dd, J = 2.1, 8.7 Hz, 1H), 7.33 (s, 1H), 6.81 (d, J = 8.7 Hz, 1H), 4.84 (d, J = 17.7 Hz, 1H), 4.68 (d, J =17.7 Hz, 1H), 3.89–4.08 (m, 3H), 3.82 (s, 3H), 3.65 (s, 3H), 3.51– 3.62 (m, 2H), 3.21–3.26 (m, 2H), 3.11–3.18 (m, 1H), 2.79–2.87 (m, 3H), 1.68–1.88, (m, 3H), 1.05–1.17 (m, 2H). MS *m*/*z* 423.4 (M + H⁺).

N-[6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-*N*-(2-fluoro-benzyl)-4-methoxy-benzenesulfonamide (215). ¹H NMR (300 MHz, methanol- d_4) δ 8.91 (s, 1H), 7.83 (d, J = 9.1 Hz, 2H), 7.49–7.52 (m, 1H), 7.28–7.33 (m, 3H), 7.16–7.19 (m, 2H), 7.1 (d, J = 9.0 Hz, 2H), 6.96–7.03 (m, 1H), 6.71 (d, J = 9.0 Hz, 1H), 4.30–4.61 (m, 5H), 3.91 (s, 3H), 3.81 (s, 3H), 3.30–3.39 (m, 2H), 2.94–3.04 (m, 1H), 2.75 (dd, J = 4.8, 15.6 Hz, 1H). MS *m/z* 546.5 (M + H⁺).

1-Methyl-1*H***-pyrazole-4-sulfonic Acid [6-Cyano-1-(3-methyl-3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(2fluoro-benzyl)-amide (213). ¹H NMR (300 MHz, methanol-d_4) \delta 8.91 (s, 1H), 8.19 (s, 1H), 7.82 (s, 1H), 7.56–7.61 (m, 1H), 7.27– 7.36 (m, 4H), 7.14–7.22 (m, 1H), 7.01–7.09 (m, 1H), 6.72 (d,** *J* **= 8.4 Hz, 1H), 4.32–4.59 (m, 5H), 3.96 (s, 3H), 3.82 (s, 3H), 3.30–3.39 (m, 2H), 3.03–3.12 (m, 1H), 2.86 (dd,** *J* **= 4.8, 15.6 Hz, 1H). MS** *m***/***z* **520.4 (M + H⁺).**

3-Methyl-*3H***-imidazole-4-sulfonic Acid [6-Cyano-1-(3-methyl-***3H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(4methanesulfonyl-benzyl)-amide (221).** ¹H NMR (300 MHz, methanol- d_4) δ 8.89 (s, 1H), 7.93 (d, J = 8.2 Hz, 2H), 7.83 (s, 1H), 7.76 (s, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.31–7.35 (m, 2H), 7.26 (s, 1H), 6.68 (d, J = 8.7 Hz, 1H), 4.39–4.68 (m, 5H), 3.81 (s, 6H), 3.40–3.46 (m, 2H), 3.15 (s, 3H), 3.03–3.11 (m, 1H), 2.86 (m, 1H). MS m/z 580.5 (M + H⁺).

N-[6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-*N*-(4-methanesulfonyl-benzyl)-benzenesulfonamide (218). ¹H NMR (300 MHz, methanol- d_4) δ 8.91 (s 1H), 7.92–7.96 (m, 4H), 7.67–7.72 (m, 5H), 7.31 (dd, J = 2.1, 8.4 Hz, 1H), 7.27 (s, 1H), 7.16 (s, 1H), 6.63 (d, J = 8.4 Hz, 1H), 4.35–4.70 (m, 5H), 3.82 (s, 3H), 3.41–3.46 (m, 2H), 3.17 (s, 3H), 2.95–3.05 (m, 1H), 2.79–2.82 (m, 1H). MS *m*/*z* 576.6 (M + H⁺).

4-({[6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-ethanesulfonyl-amino}-methyl)-piperidine-1-carboxylic Acid Methyl Ester (200). ¹H NMR (300 MHz, methanol- d_4) δ 8.93 (s, 1H), 7.42 (s, 1H), 7.42 (s, 1H), 7.33 (dd, J = 1.8, 8.4 Hz, 1H), 6.82 (d, J = 8.7 Hz, 1H), 4.79 (d, J = 18Hz, 1H), 4.70 (d, J = 18 Hz, 1H), 4.05–4.18 (m, 3H), 3.92 (s, 3H), 3.65 (s, 3H), 3.51–3.56 (m, 2H), 3.12–3.24 (m, 6H), 2.71– 2.78 (m, 2H), 1.72–1.84 (m, 3H), 1.34 (t, J = 7.5 Hz, 3H), 1.05– 1.14 (m, 2H). MS m/z 515.4 (M + H⁺).

4-{[[6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(3-methyl-3*H*-imidazole-4-sulfonyl)-amino]methyl}-piperidine-1-carboxylic Acid Methyl Ester (191). ¹H NMR (300 MHz, methanol- d_4) δ 8.93 (s 1H), 7.76 (s, 1H), 7.74 (s, 1H), 7.45 (s, 1H), 7.33 (dd, J = 1.8, 8.4 Hz, 1H), 7.32 (s, 1H), 6.82 (d, J = 8.7 Hz, 1H), 4.78 (d, J = 17.4 Hz, 1H), 4.70 (d, J = 17.4 Hz, 1H), 4.32–4.41 (m, 1H), 3.99–4.1 (m, 2H), 3.92 (s, 3H), 3.80 (s, 3H), 3.65 (s, 3H), 3.51–3.56 (2H), 2.96–3.14 (m, 4H), 2.71–2.78 (m, 2H), 1.71–1.88 (m, 3 H), 1.00–1.13 (m, 2H). MS m/z 567.5 (M + H⁺).

4-({(Benzo[1,2,5]thiadiazole-4-sulfonyl)-[6-cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-amino}methyl)-piperidine-1-carboxylic Acid Methyl Ester (188). ¹H NMR (300 MHz, methanol- d_4) δ 8.94 (s 1H), 8.32–8.35 (m, 1H), 8.32 (s, 1H), 7.08–7.85 (m, 1H), 7.42 (s, 1H), 7.35 (dd, J = 1.8, 8.7 Hz, 1H), 7.24 (s, 1H), 6.82 (d, J = 8.7 Hz, 1H), 4.78 (d, J =18 Hz, 1H), 4.62 (d, J = 18 Hz, 1H), 4.04–4.08 (m, 3H), 3.91 (s, 3H), 3.66 (s, 3H), 3.49–3.51 (m, 3H), 3.03–3.10 (m, 2H), 2.61– 2.73 (m, 3H), 1.71–1.88 (m, 3 H), 1.02–1.14 (m, 2H). MS *m*/*z* 567.5 (M + H⁺).

4-{[[6-Cyano-1-(3-methyl-3*H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(3,4-dihydro-2***H***-benzo[***b***][1,4]dioxepine-7-sulfonyl)-amino]-methyl}-piperidine-1-carboxylic Acid Methyl Ester (204).** ¹H NMR (300 MHz, methanol- d_4) δ 8.94 (s, 1H), 7.45 (s, 1H), 7.39 (dd, J = 2.1, 8.7 Hz, 1H), 7.36 (dd, J = 2.1, 8.7 Hz, 1H), 7.35 (d, J = 2.1 Hz, 1H), 7.29 (s, 1H), 7.25 (d, J = 8.7 Hz, 1H), 7.10 (d, J = 8.7 Hz, 1H), 6.88 (d, J = 8.7 Hz, 1H), 4.64 (d, J = 16.7 Hz, 1H), 4.51 (d, J = 16.7 Hz, 1H), 4.24–4.33 (m, 4H), 4.04–4.14 (m, 3H), 3.85 (s, 3H), 3.64 (s, 3H), 3.16–3.19 (m, 1H), 2.99–3.03 (m, 3H), 2.63–2.80 (m, 4H), 2.21–2.29 (m, 2H), 1.68– 1.78 (m, 3H), 1.00–1.06 (m, 2H). MS *m*/*z* 635.7 (M + H⁺).

4-({(Benzo[1,2,5]oxadiazole-4-sulfonyl)-[6-cyano-1-(3-methyl-3H-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-amino}methyl)-piperidine-1-carboxylic Acid Methyl Ester (205). ¹H NMR (300 MHz, methanol- d_4) δ 8.94 (s, 1H), 8.27–8.29 (m, 1H), 8.19–8.22 (m, 1H), 7.68 (s, 1H), 7.40–7.49 (m, 1H), 7.35 (dd, J = 1.8, 8.7 Hz, 1H), 7.29 (s, 1H), 6.82 (d, J = 8.7 Hz, 1H), 4.78 (d, J = 16.7 Hz, 1H), 4.62 (d, J = 16.7 Hz, 1H), 4.04–4.08 (m, 3H), 3.91 (s, 3H), 3.66 (s, 3H), 3.49–3.51 (m, 3H), 3.03–3.10 (m, 2H), 2.61–2.73 (m, 3H), 1.71–1.88 (m, 3H), 1.02–1.14 (m, 2H). MS m/z 605.4 (M + H⁺).

4-{[[6-Cyano-1-(3-methyl-3*H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(2-oxo-2***H***-chromene-6-sulfonyl)-amino]methyl}-piperidine-1-carboxylic Acid Methyl Ester (206). ¹H NMR (300 MHz, methanol-d_4) \delta 8.93 (s, 1H), 8.22 (d, J = 2.1 Hz, 1H), 8.07 (dd, J = 2.1, 8.7 Hz, 1H), 8.04 (d, J = 9.9 Hz, 1H), 7.53 (d, J = 8.7 Hz, 1H), 7.41 (d, J = 2.1 Hz, 1H), 7.37 (dd, J = 2.1, 8.7 Hz, 1H), 7.26 (s, 1H), 6.78 (d, J = 8.7 Hz, 1H), 6.58 (d, J = 9.9 Hz, 1H), 4.75 (d, J = 16.7 Hz, 1H), 4.68 (d, J = 16.7 Hz, 1H), 4.04–4.08 (m, 3H), 3.90 (s, 3H), 3.66 (s, 3H), 3.49–3.51 (m, 1H), 3.03–3.15 (m, 3H), 2.61–2.80 (m, 3H), 1.60–1.71 (m, 3H), 1.02–1.16 (m, 2H). MS m/z 631.4 (M + H⁺).**

4-({(**4**-Carboxy-furan-3-sulfonyl)-[6-cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-amino}methyl)-piperidine-1-carboxylic Acid Methyl Ester (197). ¹H NMR (300 MHz, methanol- d_4) δ 8.93 (s, 1H), 7.43(dd, J = 2.1Hz, 1H), 7.30 (d, J = 8.7 Hz, 1H), 7.38 (d, J = 6.0 Hz, 1H), 7.36 (s, 1H), 7.25 (d, J = 6.0 Hz, 1H), 6.83 (d, J = 8.7 Hz, 1H), 6.88 (d, J = 8.7 Hz, 1H), 4.78 (d, J = 16.7 Hz, 1H), 4.62 (d, J = 16.7Hz, 1H), 4.08–4.04 (m, 3H), 3.91 (s, 3H), 3.66 (s, 3H), 3.49– 3.51 (m, 3H), 3.03–3.10 (m, 2H), 2.61–2.73 (m, 3H), 1.71–1.88 (m, 3H), 1.02–1.14 (m, 2H). MS *m*/*z* 597.4 (M + H⁺).

4-({[6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-methanesulfonylmethanesulfonyl-amino}methyl)-piperidine-1-carboxylic Acid Methyl Ester (207). ¹H NMR (300 MHz, methanol- d_4) δ 8.96 (s, 1H), 7.49 (dd, J = 2.1, 8.7 Hz, 1H), 7.47 (d, J = 2.1 Hz, 1H), 6.88 (d, J = 8.7 Hz, 1H), 5.15 (s, 2H), 4.68 (d, J = 16.7 Hz, 1H), 4.62 (d, J = 16.7 Hz, 1H), 4.40–4.25 (m, 1H), 4.04–4.14 (m, 2H), 3.92 (s, 3H), 3.73 (s, 3H), 3.55–3.61 (m, 3H), 3.25 (s, 3H), 3.16–3.19 (m, 1H), 2.99–3.03 (m, 2H), 2.63–2.80 (m, 2H), 2.21–2.29 (m, 1H), 1.68–1.78 (m, 2H), 1.05–1.16 (m, 2H). MS m/z 579.2 (M + H⁺).

4-({[6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-cyclopropanesulfonyl-amino}-methyl)piperidine-1-carboxylic Acid Methyl Ester (202). ¹H NMR (300 MHz, methanol- d_4) δ 8.94 (s, 1H), 7.52 (dd, J = 1.8, 8.7 Hz, 1H), 7.48 (d, J = 2.0 Hz), 7.42 (s, 1H) 6.85 (d, J = 8.7 Hz, 1H), 4.78 (d, J = 16.7 Hz, 1H), 4.62 (d, J = 16.7 Hz, 1H), 4.08–4.30 (m, 3H), 3.95 (s, 3H), 3.75 (s, 3H), 3.51–3.72 (m, 4H), 3.10–3.40 (m, 4H), 2.80–3.02 (m, 2H), 2.68–2.73 (m, 1H), 1.75–2.01 (m, 3H), 1.10–1.30 (brm, 6H). MS m/z 527.4 (M + H⁺).

3,4-Dihydro-2*H***-benzo[***b***][1,4**]dioxepine-7-sulfonic Acid [6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-**1,2,3,4-tetrahydroquinolin-3-yl]-(4-methanesulfonyl-benzyl)-amide (223).** ¹H NMR (300 MHz, methanol-*d*₄) δ 8.94 (s, 1H), 7.87 (d, *J* = 8.1 Hz, 2H), 7.62 (d, *J* = 8.1 Hz, 2H), 7.45 (s, 1H), 7.39 (dd, *J* = 2.1, 8.7 Hz, 1H), 7.36 (dd, *J* = 2.1, 8.7 Hz, 1H), 7.35 (d, *J* = 2.1 Hz, 1H), 7.29 (s, 1H), 7.25 (d, *J* = 8.7 Hz, 1H), 7.10 (d, *J* = 8.7 Hz, 1H), 6.68 (d, *J* = 8.7 Hz, 1H), 4.64 (d, *J* = 16.7 Hz, 1H), 4.51 (d, *J* = 16.7 Hz, 1H), 4.24–4.33 (m, 4H), 4.04–4.14 (m, 2H), 3.85 (s, 3H), 3.20 (s, 3H), 2.95–3.05 (m, 1H), 1.12–1.25 (m, 2H). MS *m*/z 648.5 (M + H⁺).

3-Methyl-thiophene-2-sulfonic Acid [6-Cyano-1-(3-methyl-3H-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-(4methanesulfonyl-benzyl)-amide (224). ¹H NMR (300 MHz, methanol- d_4) δ 8.87 (s, 1H), 7.98 (d, J = 8.1 Hz, 2H), 7.72 (d, J = 5.1 Hz, 1H), 7.61 (dd, J = 1.8, 8.7 Hz, 1H), 7.35 (d, J = 8.7Hz, 1H), 7.25 (m, 2H), 7.07 (d, J = 5.1 Hz, 1H), 6.70 (d, J = 8.7Hz, 1H), 4.75 (d, 2H), 4.53–4.55 (m, 1H), 4.51 (d, J = 17.7 Hz, 1H), 4.48 (d, J = 17.7 Hz, 1H), 3.79 (s, 3H), 3.10–3.25 (m, 7H), 2.95–3.05 (m, 1H), 2.49 (s, 3H). MS m/z 596.6 (M + H⁺).

N-[6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-2-dimethylamino-*N*-(2-fluoro-benzyl)-acetamide (248). ¹H NMR (300 MHz, methanol- d_4) δ 8.78 (s, 1H), 7.01-7.34 (m,7 H), 6.68 (d, J = 8.7 Hz, 1H), 4.42-4.61 (m, 3H), 4.25 (d, J = 15.9 Hz, 1H), 4.18 (d, J = 15.9 Hz, 1H), 3.74 (s, 3H), 3.41-3.59 (m, 2H), 3.19 (s, 2H), 2.94-3.04 (m, 1H), 2.86 (m, 7 H). MS *m*/*z* 461.3 (M + H⁺).

N-[6-Cyano-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-*N*-(2-fluoro-benzyl)-3-methylsulfanylpropionamide (247). ¹H NMR (300 MHz, methanol- d_4) δ 8.84 (s, 1H), 7.01–7.34 (m, 7H), 6.78 (d, *J* = 7.6 Hz, 1H), 4.42–4.77 (m, 5H), 3.84 (s, 3H), 3.41–3.59 (m, 2H), 2.94–3.12 (m, 6H), 2.06 (s, 3H). MS *m*/*z* 478.4 (M + H⁺).

General Procedure for the Synthesis of Compounds According to Scheme 4. 1-Methyl-1H-imidazole-4-sulfonic Acid [6-Cyano-1-(1-trityl-1H-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-amide (15). A solution of 14 (0.397 g, 1 mmol), N,Ndiisopropylethyl amine (2.37 mL, 2 mmol), and 3 mL of dry DMF was stirred at room temperature for 30 min. To this solution was added dropwise a solution of triphenylmethyl chloride (0.278 g, 1 mmol) dissolved in dry DMF (3 mL). The reaction mixture was stirred at room temperature for 20 h. After addition of water (10 mL), the solution was extracted with dichloromethane $(3 \times 15 \text{ mL})$. The combined organic layer was washed with brine (20 mL) and the organic layer was dried over MgSO4 and evaporated under reduce pressure, yielding the crude product, which was purified on a silica gel column eluting with 10% methanol in ethyl acetate to afford **15** (0.562 g, 88%). ¹H NMR (300 MHz, CDCl₃) δ 8.0 (s, 1H), 7.9 (s, 1H), 7.4 (s, 1H), 7.25–7.37 (m, 18 H), 6.48 (d, J =8.7 Hz, 1H), 4.5 (d, J = 16.2 Hz, 1H), 4.23 (d, J = 16.2 Hz, 1H), 4.00-4.09 (m, 1H), 3.70 (s, 3H), 3.51-3.61 (m, 1H), 3.31-3.34 (m, 1H), 3.09–3.12 (m, 1H), 2.86–3.07 (m, 1H). MS m/z 640.3 $(M + H^{+}).$

A solution of 16 (0.21 mmol), dichloromethane (3 mL), and trifluoroacetic acid (0.5 mL) was stirred for 30 min. The reaction mixture was filtered to remove trityl alcohol, and the residue was washed with dichloromethane. The filtrate and washings were combined and then evaporated to dryness via rotary evaporation. The residue was purified by HPLC.

1-Methyl-1*H***-imidazole-4-sulfonic Acid Benzyl-[6-cyano-1-(3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]amide (253). ¹H NMR (300 MHz, methanol-d_4) \delta 8.86 (s, 1H), 7.83 (s, 1H), 7.71 (s, 1H), 7.18–7.39 (m, 8 H), 6.71 (d, J = 9.7 Hz, 1H), 4.29–4.73 (m, 5H), 3.80 (s, 3H), 3.36–3.42 (m, 1H), 3.18–3.26 (m, 1H), 3.12 (dd, J = 8.7, 15.6 Hz, 1H), 2.89 (dd, J = 3.3, 15.3 Hz, 1H). MS** *m***/***z* **488.1 (M + H⁺).** **1-Methyl-1***H***-imidazole-4-sulfonic Acid (2-Bromo-allyl)-[6cyano-1-(3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-3-yl]-amide (252).** ¹H NMR (300 MHz, methanol- d_4) δ 8.86 (s, 1H), 7.83 (s, 1H), 7.79 (s, 1H), 7.28 (s, 1H), 7.33 (dd, J = 2.1, 9.0Hz, 1H), 7.28 (s, 1H), 6.65 (d, J = 8.7 Hz, 1H), 6.04 (s, 1H), 5.65 (s, 1H), 4.79 (d, J = 17.1 Hz, 1H), 4.62 (d, J = 17.1 Hz, 1H), 4.39–4.59 (m, 1H), 4.19 (d, J = 17.1 Hz, 1H) 4.0 (d, J = 17.1Hz, 1H), 3.81 (s, 3H), 3.55–3.62 (m, 1H), 3.42–3.47 (m, 1H), 3.07–3.14 (m, 1H), 2.97(dd, J = 4.5, 15.9 Hz, 1H). MS *m/z* 518.2 (M + H⁺).

Synthesis of 255 According to Scheme 5. 4-{[(6-cyano-1,2,3,4-tetrahydro-quinolin-3-yl)-(pyridine-2-sulfonyl)-amino]-methyl}-piperidine-1-carboxylic Acid Methyl Ester (18). ¹H NMR (300 MHz, methanol- d_4) δ 8.70 (d, J = 7.5 Hz, 1H), 8.08 (td, J = 1.8, 7.8 Hz, 1H), 8.0 (dt, J = 1.2, 7.8 Hz, 1H), 7.66 (ddd, J = 1.5, 4.8, 7.5 Hz, 1H), 7.43 (d, J = 1.2 Hz, 1H), 7.38 (dd, J = 2.1, 8.7 Hz, 1H), 6.81 (d, J = 8.7 Hz, 1H), 4.38–4.51 (m, 1H), 4.08–4.16 (m, 2H), 3.65 (s, 3H), 3.51–3.62 (m, 2H), 3.21–3.26 (m, 2H), 3.11–3.18 (m, 1H), 2.79–2.87 (m, 3H), 1.68–1.88, (m, 3H), 1.05–1.17 (m, 2H). MS m/z 470.2 (M + H⁺).

4-{[[6-Cyano-1-(3-methyl-3H-imidazole-4-sulfonyl)-1,2,3,4tetrahydro-quinolin-3-yl]-(pyridine-2-sulfonyl)-amino]-methyl}piperidine-1-carboxylic Acid Methyl Ester (255). A solution of 18 (47 mg, 0.1 mmol), 3-methyl-3*H*-imidazole-4-sulfonyl chloride hydrochloride salt (26 mg, 0.12 mmol, Apollo Scientific Intermediates), N,N-dimethyl pyridine (15 mg, 0.12 mmol), and 3 mL of dry acetonitrile was refluxed overnight under nitrogen. Then the reaction mixture was quenched with water and extracted with dichloromethane (3 \times 10 mL). The combine organic layer was washed with brine (10 mL), and the organic layer was dried over MgSO₄ and evaporated under reduced pressure, yielding the crude product, which was purified by HPLC. ¹H NMR (300 MHz, methanol- d_4) δ 8.76 (d, J = 4.8 Hz, 1H), 8.08 (td, J = 1.8, 8.1 Hz, 1H), 8.0 (dt, J = 1.2, 7.8 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.81 (s, 1H), 7.66 (m, 2H), 7.48 (dd, J = 2.1, 8.7 Hz, 1H), 7.43 (s, 1H), 4.32-4.38 (m, 1H), 4.14-4.25 (m, 1H), 4.09-4.13 (m, 2H), 3.72 (s, 3H), 3.68 (s, 3H), 3.51-3.62 (m, 1H), 3.21-3.26 (m, 2H), 3.11-3.18 (m, 1H), 2.79-2.87 (m, 3H), 1.92-1.99 (m, 1H), 1.68-1.88 (m, 2H), 1.05–1.17 (m, 2H). MS m/z 614.4 (M + H⁺).

[[1-(3-Benzyl-3*H*-imidazol-4-ylmethyl)-6-cyano-1,2,3,4-tetrahydro-quinolin-3-yl]-(1-methyl-1*H*-imidazole-4-sulfonyl)-amino]acetic Acid *tert*-Butyl Ester (254). ¹H NMR (300 MHz, methanol d_4) δ 8.86 (s, 1H), 7.11–7.50 (m, 10 H), 6.55 (d, J= 8.5 Hz, 1H), 5.12 (s, 2H), 4.62–4.78 (m, 2H), 4.39–4.59 (m, 1H), 4.19 (d, J= 17.1 Hz, 1H) 4.0 (d, J= 17.1 Hz, 1H), 3.81 (s, 3H), 3.55–3.62 (m, 1H), 3.42–3.47 (m, 1H), 3.07–3.14 (m, 1H), 2.97 (m, 1H), 1.42 (s, 9H). MS *m*/z 602.2 (M + H⁺).

4-{[(6-Cyano-1-pyridin-3-ylmethyl-1,2,3,4-tetrahydro-quinolin-3-yl)-(pyridine-2-sulfonyl)-amino]-methyl}-piperidine-1-carboxylic Acid Methyl Ester (256). ¹H NMR (300 MHz, methanol d_4) δ 8.84–8.89 (m, 2H), 8.70–8.75 (m, 1H), 8.49–8.51 (m, 1H), 8.03–8.19 (m, 3H), 7.68 (ddd, J = 1.5, 4.8, 7.5 Hz, 1H), 7.43 (d, J = 1.2 Hz, 1H), 7.38 (dd, J = 2.1, 8.7 Hz, 1H), 6.81 (d, J = 8.7Hz, 1H), 4.68–4.83 (m, 2H), 4.38–4.51 (m, 1H), 4.08–4.16 (m, 2H), 3.65 (s, 3H), 3.51–3.62 (m, 2H), 3.21–3.26 (m, 2H), 3.11– 3.18 (m, 1H), 2.79–2.87 (m, 3H), 1.68–1.88, (m, 3H), 1.05–1.17 (m, 2H). MS m/z 561.4 (M + H⁺).

General Procedure for the Synthesis of Compounds According to Scheme 6. A suspension of the aryl bromide 21 (500 mg, 1.53 mmol), phenyl boronic acid (559 mg, 4.58 mmol), and tetrakis triphenylphosphine palladium (177 mg, 10 mol %) in dimethoxyethane (15 mL) was thoroughly degassed and stirred under argon. Deionized water (3 mL) and barium hydroxide octahydrate (1.45 gm, 4.58 mmol) were added, and the reaction mixture was heated at reflux for 2 h. The reaction mixture was diluted with ethyl acetate, washed with water and brine, dried (Na₂SO₄), and concentrated under reduced pressure. The residue was purified by flash chromatography over a silica gel column to give 22 (120 mg, 45%) as a colorless solid. ¹H NMR (CDCl₃) δ 7.49 (d, J = 8.1 Hz, 1H), 7.36 (t, J = 7.8 Hz, 2H), 7.23 (t, J = 7.4 Hz, 4H), 6.51 (d, J = 8.1Hz, 1H), 5.04 (d, J = 7.5 Hz, 1H), 4.11 (br s, 1H), 3.95 (s, 1H), 3.37-3.33 (m, 1H), 3.19-3.16 (m, 1H), 3.09-3.02 (m, 1H), 2.77-2.72 (m, 1H), 1.43 (s, 9H).

To a stirred solution of the phenyl derivative **22** (120 mg, 0.37 mmol) in CH₂Cl₂ (1.6 mL) at room temperature, trifluoroacetic acid (0.4 mL) was added, and the reaction mixture was stirred for 2 h. The solution was concentrated under reduced pressure, and the crude amine (trifluoroacetate salt) **23** was taken to the next step without further purification.

To a mixture of the amine **23** in CH₂Cl₂ (2 mL), diisopropylethylamine (0.5 mL) was added and the reaction mixture was stirred at room temperature for 0.5 h. The appropriate sulfonyl chloride (0.37 mmol) was added, and the reaction mixture was stirred for an additional 2 h. The reaction mixture was partitioned between water and ethyl acetate. The organic layer was washed with brine, dried (Na₂SO₄), and evaporated under reduced pressure. Purification by flash chromatography gave **24** (89%) as a pale yellow solid. ¹H NMR (methanol- d_4) δ 7.93 (s, 1H), 7.76 (s, 1H), 7.69 (d, J = 1.2Hz, 1H), 7.49 (dd, J = 1.2, 8.4 Hz, 2H), 7.35 (t, J = 7.5 Hz, 2H), 7.22 (d, J = 7.5 Hz, 1H), 7.11 (s, 1H), 6.60 (d, J = 8.4 Hz, 1H), 3.77 (s, 3H), 3.74–3.69 (m, 1H), 3.39–3.36 (m, 1H), 3.09 (dd, J =8.1, 11.4 Hz, 1H), 2.93 (dd, J = 4.5, 15.6 Hz, 1H), 2.76 (dd, J =8.1, 15.6 Hz, 1H).

To a stirred solution of the sulfonamide **24** (0.33 mmol) in dichloroethane (1 mL) and trifluoroacetic acid (1 mL) was added 3-methyl-3*H*-imidazole-4-carbaldehyde (91 mg, 0.83 mmol) at room temperature, and the reaction mixture was heated to 50 °C for 1 h. Triethylsilane (0.13 mL, 0.83 mmol) was added and stirring was continued for an additional 48 h. Volatile materials were removed under vacuum, and the reaction mixture was diluted with ethyl acetate, washed with aqueous NaHCO₃ solution, water, and brine, dried (Na₂SO₄), filtered, and concentrated in vacuum. Purification by flash chromatography afforded **25** (50 mg, 33%) as a pale yellow foam. ¹H NMR (methanol-*d*₄) δ 8.89 (s, 1H), 8.06 (s, 1H), 7.67 (s, 1H), 7.49 (t, *J* = 7.8 Hz, 3H), 7.37–7.33 (m, 3H), 7.24–7.20 (m, 2H), 6.85 (d, *J* = 7.8 Hz, 1H), 4.74 (d, *J* = 17.1 Hz, 1H), 4.57 (d, *J* = 17.1 Hz, 1H), 3.93–3.71 (m, 8H), 3.35–3.31 (m, 1H), 3.04 (dd, *J* = 4.5, 15.6 Hz, 1H), 2.76 (dd, *J* = 6.3, 15.9 Hz, 1H).

A mixture of **25** (1 equiv), Cs_2CO_3 (2 equiv), and the appropriate bromide (1 equiv) in anhydrous DMF was stirred overnight at room temperature. The reaction mixture was partitioned between water and ethyl acetate. The organic layer was washed with brine, dried (Na₂SO₄), and evaporated under reduced pressure. The crude residue was purified by HPLC.

1-Methyl-1*H***-imidazole-4-sulfonic Acid [1-(3-Methyl-3***H***-imidazol-4-ylmethyl)-6-phenyl-1,2,3,4-tetrahydro-quinolin-3-yl]-(2-pyrrol-1-yl-ethyl)-amide (272). ¹H NMR (methanol-d_4) \delta 7.74 (d, J = 1.0 Hz, 1H), 7.70 (d, J = 1.5 Hz, 1H), 7.53 (br s, 1H), 7.52–7.50 (m, 2H), 7.39–7.33 (m, 3H), 7.26–7.22 (m, 1H), 7.17–7.16 (m, 1H), 6.90 (d, J = 8.5 Hz, 1H), 6.80 (br s, 1H), 6.63 (t, J = 2.0 Hz, 2H), 6.04 (t, J = 2.0 Hz, 2H), 4.44 (d, J = 15.5 Hz, 1H), 4.27 (d, J = 15.5 Hz, 1H), 4.22–4.17 (m, 4H), 3.75 (s, 3H), 3.63 (s, 3H), 3.48–3.44 (m, 2H), 2.91 (dd, J = 4.5, 11.5 Hz, 1H), 2.76–2.66 (m, 2H). MS m/z 556.3 (M + H⁺).**

N-tert-Butyl-2-{(1-methyl-1*H*-imidazole-4-sulfonyl)-[1-(3-methyl-3*H*-imidazol-4-ylmethyl)-6-phenyl-1,2,3,4-tetrahydro-quino-lin-3-yl]-amino}-acetamide (267). ¹H NMR (methanol- d_4) δ 8.87 (s, 1H), 7.78 (d, J = 1.2 Hz, 2H), 7.45 (d, J = 7.2 Hz, 2H), 7.41 (s, 1H), 7.32 (t, J = 7.5 Hz, 3H), 7.19 (t, J = 7.2 Hz, 2H), 6.82 (d, J = 7.8 Hz, 1H), 4.65 (d, J = 15.6 Hz, 1H), 4.52 (d, J = 15.6 Hz, 1H), 4.36–4.18 (m, 1H), 3.94–3.75 (m, 9H), 3.31–3.40 (m, 1H), 3.02–2.85 (m, 2H), 1.31 (m, 9H). MS *m*/*z* 576.4 (M + H⁺).

1-Methyl-1*H***-imidazole-4-sulfonic Acid (4-Methanesulfonylbenzyl)-[1-(3-methyl-3***H***-imidazol-4-ylmethyl)-6-phenyl-1,2,3,4-tetrahydroquinolin-3-yl]-amide (278). ¹H NMR (300 MHz, methanol-d_4) \delta 8.87 (s, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.85 (s, 1H), 7.80 (s, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.40–7.30 (m, 4H), 7.28–7.22 (m, 2H), 6.72 (d, J = 8.4 Hz, 1H), 4.75 (d, J = 16.5 Hz, 2H), 4.55–4.50 (m, 1H), 4.48 (d, J = 17.4 Hz, 1H), 4.35 (d, J = 16.5 Hz, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.42–3.36 (m, 2H), 3.12 (s, 3H), 3.08–2.95 (m, 2H). MS m/z 631.6 (M + H⁺).**

1-Methyl-1*H***-imidazole-4-sulfonic Acid (2-Bromo-allyl)-[1-(3-methyl-3***H***-imidazol-4-ylmethyl)-6-phenyl-1,2,3,4-tetrahydroquinolin-3-yl]-amide (264). ¹H NMR (300 MHz, methanol-d_4) \delta 8.92 (s, 1H), 7.80 (d, J = 3.9 Hz, 2H), 7.55 (dd, J = 1.2, 8.4 Hz, 2H), 7.45 (s, 1H), 7.40 (t, J = 8.7 Hz, 3H), 7.32–7.20 (m, 2H), 6.90 (d, J = 8.7 Hz, 1H), 6.10 (d, J = 2.1 Hz, 1H), 5.65 (d, J = 2.1 Hz, 1H), 4.75 (d, J = 16.8 Hz, 1H), 4.60 (d, J = 17.1 Hz, 1H), 4.50–4.40 (m, 1H), 4.20 (d, J = 18.0 Hz, 1H), 4.10 (d, J = 18.0 Hz, 1H), 3.95 (s, 3H), 3.80 (s, 3H), 3.49–3.40 (m, 2H), 3.15–3.05 (m, 1H), 2.87 (dd, = 5.1, 15.6 Hz, 1H). MS** *m***/z 583.0 (M + H⁺).**

1-Methyl-1*H***-imidazole-4-sulfonic Acid Ethyl-[1-(3-methyl-3***H***-imidazol-4-ylmethyl)-6-phenyl-1,2,3,4-tetrahydro-quinolin-3-yl]amide (259).** ¹H NMR (300 MHz, methanol- d_4) δ 8.90 (s, 1H), 7.75 (s, 1H), 7.72 (s, 1H), 7.52 (dd, J = 1.2, 8.7 Hz, 2H), 7.45 (s, 1H), 7.35 (t, J = 7.2 Hz, 3H), 7.30–7.20 (m, 2H), 6.87 (d, J = 8.7 Hz, 1H), 4.75 (d, J = 16.8 Hz, 1H), 4.57 (d, J = 16.8 Hz, 1H), 4.47–4.37 (m, 1H), 3.95 (s, 3H), 3.80 (s, 3H), 3.45–3.25 (m, 4H), 3.20–3.10 (m, 1H), 2.90 (m, 1H), 1.25 (t, J = 6.9 Hz, 3H). MS m/z 491.5 (M + H⁺).

{(1-Methyl-1*H*-imidazole-4-sulfonyl)-[1-(3-methyl-3*H*-imidazol-4-ylmethyl)-6-phenyl-1,2,3,4-tetrahydro-quinolin-3-yl]-amino}-acetic Acid Methyl Ester (266). ¹H NMR (300 MHz, methanol- d_4) δ 8.92 (s, 1H), 7.80 (s, 1H), 7.75 (s, 1H), 7.52 (dd, J = 1.2, 8.4 Hz, 2H), 7.44 (s, 1H), 7.36 (t, J = 7.5 Hz, 3H), 7.30–7.25 (m, 2H), 6.85 (d, J = 8.7 Hz, 1H), 4.75 (d, J = 16.8 Hz, 1H), 4.55 (d, J = 16.8 Hz, 1H), 4.50–4.40 (m, 1H), 4.15 (d, J = 18.3 Hz, 1H), 4.08 (d, J = 18.6 Hz, 1H), 3.95 (s, 3H), 3.80 (s, 3H), 3.70 (s, 3H), 3.55–3.45 (m, 2H), 3.05–2.90 (m, 2H). MS *m*/*z* 535.4 (M + H⁺).

General Procedure for the Synthesis of Compounds According to Scheme 7. General Procedure for the Conversion of Nitrile (5) to Amide (28). To a stirred solution of nitrile 5 (441 mg, 1 mmol) in alcohol (8 mL) was slowly added concentrated sulfuric acid (0.05 mL) at room temperature. The resulting solution was stirred at 40 °C for 2 h. The mixture was poured into cold aqueous 20% KHCO₃ solution to neutralize the acid and precipitate the product. The product was filtered, washed with cold water, and dried under vacuum to give amides 28 (40–45%).

3-(1-Methyl-1*H***-imidazole-4-sulfonylamino)-1-(3-methyl-3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydroquinoline-6-carboxylic Acid** *tert***-Butylamide (28). ¹H NMR (300 MHz, methanol-d_4) \delta 8.90 (s, 1H), 7.80 (s, 1H), 7.70 (s, 1H), 7.51 (dd, J = 2.1, 8.7 Hz, 1H), 7.45 (s, 1H), 7.40 (d, J = 2.1 Hz, 1H), 6.80 (d, J = 8.7 Hz, 1H), 4.80 (d, J = 16.8 Hz, 1H), 4.60 (d, J = 16.8 Hz, 1H), 3.92 (s, 3H), 3.86–3.83 (m, 1H), 3.80 (s, 1H), 3.52–3.45 (m, 1H), 3.42–3.35 (m, 1H), 3.0 (dd, J = 4.8, 16.5 Hz, 1H), 2.74 (dd, J = 6.3, 16.2 Hz, 1H), 1.45 (s, 9H) MS** *m***/z 486.4 (M + H⁺).**

3-[(*tert*-Butylcarbamoyl-methyl)-(1-methyl-1*H*-imidazol-4-sulfonyl)-amino]-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tet-rahydro-quinolin-6-carboxylic Acid *tert*-Butylamide (285). The compound was prepared using the general *N*-alkylation procedure (5 to 2, Scheme 1). ¹H NMR (300 MHz, methanol- d_4) δ 8.92 (s, 1H), 7.85 (s, 1H), 7.80 (s, 1H), 7.52 (dd, J = 2.1, 8.7 Hz, 1H), 7.43 (s, 1H), 7.40 (d, J = 2.1 Hz, 1H), 6.79 (d, J = 8.7 Hz, 1H), 4.75 (d, J = 16.8 Hz, 1H), 4.63 (d, J = 16.8 Hz, 1H), 4.33–4.25 (m, 1H), 3.92 (s, 3H), 3.87 (s, 2H), 3.81 (s, 3H), 3.57–3.51 (m, 1H), 3.44–3.40 (m, 1H), 3.03 (dd, J = 4.5, 15.9 Hz, 1H), 2.80 (dd, J = 4.5, 15.9 Hz, 1H), 1.43 (s, 9H), 1.35 (s, 9H). MS *m*/*z* 599.5 (M + H⁺).

General Procedure for the Conversion of Nitrile (5) to Acid (27). A solution of 5 (441 mg, 1.0 m mol) in concentrated HCl (20 mL) was stirred at 80 °C for 2 h. The reaction mixture was cooled to room temperature and then evaporated to dryness under reduced pressure. The residue was dissolved in saturated LiOH solution (pH 9) and then evaporated to dryness under reduced pressure. The residue was dissolved in 10% aqueous HCl solution (pH 2), evaporated, and dried under vacuum to give the corresponding acid 27, which was used in the next step without further purification. ¹H NMR (300 MHz, methanol- d_4) δ 8.90 (s, 1H), 7.80 (s, 1H), 7.70 (s, 1H), 7.62 (dd, J = 2.1, 8.7 Hz, 1H), 7.52 (d, J = 2.1 Hz, 1H), 7.42 (s, 1H), 6.80 (d, J = 8.7 Hz, 1H), 4.80 (d, J = 16.8 Hz,

1H), 4.62 (d, J = 16.8 Hz, 1H), 3.92 (s, 3H), 3.90–3.82 (m, 1H), 3.80 (s, 3H), 3.55–3.45 (m, 1H), 3.43–3.38 (m, 1H), 3.03 (dd, J = 4.8, 16.5 Hz, 1H), 2.76 (dd, J = 6.3, 16.2 Hz, 1H). MS m/z 486.4 (M + H⁺).

To a mixture of the acid **27** (430 mg, 1.0 m mol) above, benzyl amine (107 mg, 1 mmol), and *N*,*N*-dimethylamino pyridine (18 mg, 0.15 mmol) in DMF was added EDC (287 mg, 1.5 mmol), and the mixture was stirred at room temperature for 20 h. The mixture was concentrated under reduced pressure, and aqueous NaHCO₃ solution (20 mL) was added. The mixture was extracted with 10% MeOH in CHCl₃ (3 × 30 mL), and the organic layer was dried (Na₂SO₄) and evaporated under reduced pressure. The crude product was purified by flash chromatography to afford **28** (220 mg, 38%).

3-(1-Methyl-1*H***-imidazole-4-sulfonylamino)-1-(3-methyl-3***H***-imidazol-4-ylmethyl)-1,2,3,4-tetrahydroquinoline-6-carboxylic Acid Benzylamide (28). ¹H NMR (300 MHz, methanol-d_4) \delta 8.90 (s, 1H), 7.76 (s, 1H), 7.70 (s, 1H), 7.62 (dd, J = 2.1, 8.7 Hz, 1H), 7.50 (d, J = 2.1 Hz, 1H), 7.46 (s, 1H), 7.36–7.30 (m, 5H), 6.82 (d, J = 8.7 Hz, 1H), 4.75 (d, J = 16.8 Hz, 1H), 4.62 (d, J = 16.8 Hz, 1H), 4.55 (s, 2H), 3.92 (s, 3H), 3.90–3.82 (m, 1H), 3.80 (s, 3H), 3.53–3.48 (m, 1H), 3.43–3.39 (m, 1H), 3.03 (dd, J = 4.8, 16.5 Hz, 1H), 2.75 (dd, J = 6.3, 16.2 Hz, 1H).**

3-[(*tert*-Butylcarbamoyl-methyl)-(1-methyl-1*H*-imidazol-4-sulfonyl)-amino]-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tetrahydro-quinolin-6-carboxylic Acid Benzylamide (291). Compound 291 was prepared as described from the general procedure for *N*-alkylation. ¹H NMR (300 MHz, methanol-*d*₄) δ 8.92 (s, 1H), 7.80 (s, 1H), 7.78 (s, 1H), 7.63 (dd, *J* = 2.1, 8.7 Hz, 1H), 7.53 (d, *J* = 2.1 Hz, 1H), 7.42 (s, 1H), 7.36–7.30 (m, 5H), 6.82 (d, *J* = 8.7 Hz, 1H), 4.77 (d, *J* = 16.8 Hz, 1H), 4.65 (d, *J* = 17.4 Hz, 1H), 4.55 (s, 2H), 4.33–4.22 (m, 1H), 3.91 (s, 3H), 3.85 (s, 2H), 3.80 (s, 3H), 3.56–3.50 (m, 1H), 3.46–3.39 (m, 1H), 3.03 (dd, *J* = 5.1, 15.3 Hz, 1H), 1.4 (s, 9H). MS *m*/z 633.8 (M + H⁺).

3-[*(tert*-Butylcarbamoyl-methyl)-(1-methyl-1*H*-imidazol-4-sulfonyl)-amino]-1-(3-methyl-3*H*-imidazol-4-ylmethyl)-1,2,3,4-tet-rahydro-quinolin-6-carboxylic Acid (289). Compound 289 was prepared as described from general procedure for *N*-alkylation. ¹H NMR (300 MHz, methanol- d_4) δ 8.92 (s, 1H), 7.82 (s, 1H), 7.79 (s, 1H), 7.62 (dd, J = 2.1, 8.7 Hz, 1H), 7.52 (d, J = 2.1 Hz, 1H), 7.42 (s, 1H), 6.80 (d, J = 8.7 Hz, 1H), 4.75 (d, J = 16.8 Hz, 1H), 4.65 (d, J = 16.8 Hz, 1H), 4.35–4.25 (m, 1H), 3.92 (s, 3H), 3.85 (s, 2H), 3.80 (s, 3H), 3.60–3.51 (m, 1H), 3.50–3.40 (m, 1H), 3.03 (dd, J = 4.8, 16.5 Hz, 1H), 2.80 (dd, J = 6.3, 16.2 Hz, 1H), 1.40 (s, 9H). MS *m*/z 543.5 (M + H⁺).

Synthesis of 34 According to Scheme 8. Preparation of 1-[4-(*N*-triphenylmethyl)imidazolyl]ethanol. To an ice-bath cooled solution of 3.35 mL (10.0 mmol) of 3 M methyl magnesium bromide in 40 mL dry ether was added a solution of 4-(*N*triphenylmethyl)-imidazole carboxaldehyde (1.69 g, 10 mmol) in THF. After 1.5 h at ambient temperature, a concentrated solution of 0.67 g (25 mmol) NH₄Cl in water was added to the reaction mixture. The mixture was stirred for 1 h and filtered, and the solids were washed with THF. The combined filtrate and washes were washed with water and brine, dried over NaSO₄, and concentrated in vacuo to afford the required compound.¹⁷ ¹H NMR (300 MHz CDCl₃) 7.42 (s, 1H), 7.30–7.39 (m, 9H), 7.10–7.21 (m, 6H), 6.85 (s, 1H), 4.85 (q, 1H), 1.5 (d, 3H). MS *m*/*z* 355.2 (M + H⁺).

A mixture of **33** (47 mg, 0.1 mmol) and 1-(4-(*N*-triphenylmethyl)imidazolyl)ethanol (17 mg, 0.05 mmol) in 5 mL of dry acetonitrile was added methanesulfonyl chloride (34 mg, 0.3 mmol), and the mixture was heated at 60 °C overnight under nitrogen. Aqueous NaHCO₃ and ethyl acetate were added. The organic layer was washed with water and brine and dried over MgSO₄. The crude product was purified by HPLC to give **34** as a mixture of isomers.¹⁸ ¹H NMR (300 MHz, methanol-*d*₄) δ 8.95 (s, 1H), 8.94 (s, 1H), 8.72 (d, *J* = 7.5 Hz, 1H), 8.68 (d, *J* = 7.5 Hz, 1H), 7.90–8.10 (m, 4H), 7.59–7.70 (m, 4H), 7.31–7.48 (m, 4H), 6.95 (d, *J* = 8.7 Hz, 1H), 6.91 (d, *J* = 8.7 Hz, 1H), 5.50 (q, 1H), 5.40 (q, 1H), 4.38– 4.51 (m, 2H), 4.08–4.16 (m, 4H), 3.70 (s, 6H), 3.32–3.45 (m, 4H), 3.01–3.22 (m, 6H), 2.65–2.90 (m, 6H), 1.68–1.88 (m, 6H), 1.60 (d, 6H), 1.05–1.17 (m, 4H). MS *m*/*z* 564.6 (M + H⁺).

Resolution of Enantiomers (163 and 164). Enantiomerically pure amines derived from racemic 6-cyano-1,2,3,4-tetrahydro-quinolin-3-ylamine hydrochloride were obtained by coupling with *S*-mandelic acid to form diastereomeric amides as described previously.^{5,10} After resolution, the amines were converted to **163** and **164**, as shown in Scheme 1.

Modeling Studies. We published a detailed procedure for building a homology model of Pf-PFT.⁷ Briefly, the model was generated with MODELLER¹⁹ by using the crystal structure of rat-PFT complexed with the nonsubstrate tetrapeptide inhibitor CVFM and farnesyl-pyrophosphate as the template structure (PDB entry 1JCR). The sequences of the two subunits (α and β) of Pf-PFT were obtained from the PlasmoDB²⁰ (α : PFL2050w and β : chr11.glm_528) and aligned with the template. Only regions with reasonable reliability in the alignment were included. The model of Pf-PFT comprises the following sequence segments (the residue numbers of the corresponding segments of the rat-PFT subunits are given in parentheses): α : 72–164 (87–179), 300–411 (184–283); β : 421–677 (71–315), 806–896 (330–417). Note that the Pf-PFT sequences (α : 497; β : 967) are much longer than the rat ones (α : 377; β : 437)

A small molecule crystal structure of 7-nitro-1,2,3,4-THQ,²¹ with R = 0.034 at 0.77 Å resolution, shows that the tetrahydropyridine ring adopts an envelope conformation, with atom C3 deviating by 0.66 Å from the mean plane through the other five atoms. Upon substitution with an equatorial amino group, the deviation of the methyl from the plane is 0.40 Å, implying that when the two enantiomers are superimposed the amines are only 0.40 Å apart. Both conformers of the molecule were built with Insight (Accelrys) starting from the 7-nitro-1,2,3,4-THQ crystal structure, and the energies were minimized with the CFF force-field; a 4r ϵ electrostatics model was used. The energies were 54.28 kcal/mol (equatorial) and 56.96 kcal/mol (axial).

All molecular docking calculations of the THQ compounds were carried out using the FLO/QXP v.6.02 package²⁴ with as start model **162**, as observed in the rat-PFT crystal structure transferred by superposition into the comparative model of Pf-PFT. THQ compounds were built with the FLO BUILDER module, specifically taking care to assign the mixed sp2/sp3 N atom type of the sulfonamide and allowing for mild pyramidalization. Monte Carlo searches were carried out for the THQ substituents, using 50 cycles per rotatable bond, while keeping the THQ scaffold fixed. Subsequently, the best solutions were minimized, allowing also for spatial freedom to the scaffold. Because the force-field has not been parametrized for transition metal complexes, the inhibitor N atom that coordinates the Zn²⁺-binding imidazole ring.

Plasmodium Strains. The *P. falciparum* strains used in this study were 3D7 (Netherlands [airport-associated malaria], chloroquine sensitive) and K1 (Thailand, chloroquine resistant, pyrimethamine resistant). Strain 3D7 was provided by Dr. Pradipsinh Rathod from the University of Washington. *P. falciparum* strain K1 and *P. berghei* isolate NK65 (used for rodent malaria experiments) were obtained from the MR4 unit of the American Type Culture Collection (ATCC, Manassas, VA).

P. falciparum Culture. Strains of *P. falciparum* were cultured in vitro using experimental techniques described by Trager and Jensen.²² Cultures were maintained in RPMI-1640 (Sigma, St. Louis, MI) with 2 mM L-glutamine, 25 mM HEPES, 33 mM NaHCO₃, 20 μ g/mL gentamicin sulfate, and 20% (v/v) heatinactivated human plasma type A+ (RP-20P). Type A+ erythrocytes were obtained from lab donors, washed three times with RPMI 1640, resuspended in 50% RPMI-1640, and stored at 4 °C. Parasites were grown in 10 mL of a 2% hematocrit/RP-20P (v/v) in 50 mL flasks under a 5% CO₂, 5% O₂, and 90% N₂ atmosphere.

P. falciparum ED₅₀ Determination. A total of 10 μ L of PFTI in solution was added to each well of a 96-well plate followed by the addition of 190 μ L of an asynchronous *P. falciparum* culture at parasitemia and hematocrit of 0.5%. PFTI solutions were prepared

by diluting 20 mM THQ PFTI in dimethylsulfoxide by 200-fold with RP-20P for the highest concentration (100 μ M stock gives final assay concentration of 5 μ M), then performing further serial dilutions in RP-20P. Plates were flushed with 5% CO2, 5% O2, and 90% N2 then incubated at 37 °C for 48 h. 8[3H]-Hypoxanthine (0.3 µCi, 20 Ci/mmol, American Radiolabeled Chemicals) in 30 µL of RP-20P was added to cultures and incubated for an additional 24 h. Cells were harvested onto glass fiber filters by a cell harvester (Inotech Biosystems International, Inc Rockville, MD), and the radioactivity incorporated into the parasites was counted on a Chameleon 425-104 multilabel plate counter (Hidex Oy Turku, Finland). The background level detected with uninfected erythrocytes was subtracted from the data. The ³H-incorporation into infected erythrocytes with 1 μ L of DMSO vehicle alone represents 100% malaria growth. ED₅₀ values, the effective dose that reduces growth by 50%, were determined by linear regression analysis of the plots of ³H-hypoxanthine incorporation versus concentration of compound. Each compound was tested in duplicate, and the mean value is shown; individual measurements differed by less than 3-fold.

Pf-PFT IC₅₀ Determination. The PFT assay used to determine the IC_{50} s (inhibitor concentration that causes 50% enzyme inhibition) of the compounds is based on a PFT [³H] scintillation proximity assay (SPA; TRKQ7010 Amersham Biosciences Corp Piscataway, NJ).³ Assays were carried out in assay buffer (pH 7.5, 50 mM HEPES, 30 mM MgCl₂, 20 mM KCl, 5 mM DTT, 0.01% Triton X-100), 1 μ M human lamin-B carboxy-terminus sequence peptide (biotin-YRASNRSCAIM), and 1 µCi ³H-farnesylpyrophosphate (Amersham specific activity 15 to 20 Ci/mM) in a total volume of 50 μ L, which included 1 μ L of Pf-PFT inhibitor solution in DMSO and 5 µL of partially purified Pf-PFT. Assays in the absence of Pf-PFT inhibitor and Pf-PFT were included as positive and negative controls, respectively. Reaction mixtures were incubated at 37 °C for 60 min and terminated by the addition of 70 μ L of assay STOP solution and 5 μ L of SPA beads. The assay mixture was incubated at room temperature for 30 min. The assay was counted on a plate Chameleon 425-104 multilabel counter (Hidex Oy Turku, Finland). IC50 values were calculated using linear regression analysis of the plots of the amount of radio-prenylation versus the concentration of compound.

Mammalian-PFT IC₅₀ Determination. The PFT assay used to determine the IC₅₀s of the compounds is based on a farnesyl transferase [3H] SPA enzyme assay (TRKQ7010 Amersham Biosciences Corp Piscataway, NJ). Rat PFT was prepared as described.²³ Assays were carried out in assay buffer pH 7.5 (50 mM HEPES, 30 mM MgCl₂, 20 mM KCl, 5 mM DTT, 0.01% Triton X-100) and 1 µM human lamin-B carboxy-terminus sequence peptide (biotin-YRASNRSCAIM) in a total volume of 50 μ L, which included 1 μ L of PFT inhibitor solution in DMSO and 5 μ L of partially purified rat-PFT. Assays in the absence of PFT inhibitor and rat-PFT were included as positive and negative controls, respectively. Reaction mixtures were incubated at 37 °C for 15 min and terminated by the addition of 70 μ L of assay STOP solution and 5 μ L of SPA beads. The assay is incubated at room temperature for 30 min. The assay was counted on a plate Chameleon 425-104 multilabel counter (Hidex Oy Turku, Finland). IC₅₀ values were calculated using linear regression analysis of the plots of ³H-FPP prenylation versus concentration of compounds.

Note Added after ASAP Publication. This manuscript was released ASAP on August 28, 2007, with errors in the compound numbers in Schemes 5 and 7 and with an error in the structure for compound **119** in Table 2. The correct version was posted on September 13, 2007.

Supporting Information Available: HPLC traces of key compounds **6**, **162**, **110**, **191**, and **234**. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Chakrabarti, D.; Azam, T.; DelVecchio, C.; Qiu, L.; Park, Y.; Allen, C. M. Protein prenyl transferase activities of *Plasmodium falciparum*. *Mol. Biochem. Parasitol.* **1998**, *94*, 175–184.
- (2) Chakrabarti, D.; Da Silva, T.; Barger, J.; Paquette, S.; Patel, H.; Patterson, S.; Allen, C. M. Protein farnesyltransferase and protein prenylation in *Plasmodium falciparum*. J. Biol. Chem. 2002, 277, 42066–42073.
- (3) Nallan, L.; Bauer, K. D.; Bendale, P.; Rivas, K.; Yokoyama, K.; Horney, C. P.; Pendyala, P. R.; Floyd, D.; Lombardo, L. J.; Williams, D. K.; Hamilton, A.; Sebti, S.; Windsor, W. T.; Weber, P. C.; Buckner, F. S.; Chakrabarti, D.; Gelb, M. H.; Van Voorhis, W. C. Protein farnesyltransferase inhibitors exhibit potent antimalarial activity. J. Med. Chem. 2005, 48, 3704–3713.
- (4) Bell, I. M. Inhibitors of farnesyltransferase: A rational approach to cancer chemotherapy? J. Med. Chem. 2004, 47, 1869–1878.
- (5) Lombardo, L. J.; Camuso, A.; Clark J.; Fager K.; Gullo-Brown J.; Hunt J. T.; Inigo I.; Kan D.; Koplowitz B.; Lee F, McGlinchey K.; Qian L.; Ricca C.; Rovnyak G.; Traeger S.; Tokarski J.; Williams D. K.; Wu L. I.; Zhao Y.; Manne V.; Bhide R. S. Design, synthesis, and structure-activity relationships of tetrahyroquinoline-based farnesyltransferase inhibitors. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 1895– 1899.
- (6) Hunt, J. T.; Ding, C. Z.; Batorsky, R.; Bednarz, M.; Bhide, R.; Cho, Y.; Chong, S.; Chao, S.; Gullo-Brown, J.; Guo, P.; Kim, S. H.; Lee, F. Y.; Leftheris, K.; Miller, A.; Mitt, T.; Patel, M.; Penhallow, B. A.; Ricca, C.; Rose, W. C.; Schmidt, R.; Slusarchyk, W. A.; Vite, G.; Manne, V. Discovery of (*R*)-7-cyano-2,3,4,5-tetrahydro-1-(1*H*imidazol-4-ylmethyl)-3-phenylmethyl)-4-(2-thienylsulfonyl)-1*H*-1,4benzodiazepine (BMS-214662), a farnesyltransferase inhibitor with potent preclinical antitumor activity. *J. Med. Chem.* **2000**, *43*, 3587– 3595.
- (7) Eastman, R. T.; White, J.; Hucke, O.; Bauer, K.; Yokoyama, K.; Nallan, L.; Chakrabarti, D.; Verlinde, C. L.; Gelb, M. H.; Rathod, P. K.; Van Voorhis, W. C. Resistance to a protein farnesyltransferase inhibitor in *Plasmodium falciparum. J. Biol. Chem.* **2005**, 280, 13554–13559.
- (8) Eastman, R. T.; White, J.; Hucke, O.; Yokoyama, K.; Verlinde, C. L.; Hast, M. A.; Beese, L. S.; Gelb, M. H.; Rathod, P. K.; Van Voorhis, W. C. Resistance mutations at the lipid substrate binding site of *Plasmodium falciparum* protein farnesyltransferase. *Mol. Biochem. Parasitol.* **2007**, *152* (1), 66–71.
- (9) Van Voorhis, W. C.; Rivas, K.; Bendale, P.; Nallan, L.; Hornéy, C.; Barrett, L. K.; Ankala, S.; Hucke, O.; Verlinde, C. L. M. J.; Chakrabarti, D.; Strickland, C.; Yokoyama, K.; Buckner, F. S.; Hamilton, A.; Williams, D. K.; Lombardo, L. J.; Floyd, D.; Gelb, M. H. Tetrahydroquinoline *Plasmodium falciparum* protein farnesyltransferase inhibitors: Efficacy, pharmacokinetics, and metabolism. *Antimicrob. Agents Chemother.* 2007, in press.
- (10) Bhide, R. Inhibitors of farnesyl protein transferase. WO 99/01434, 1999.

- (11) Reid, T. S.; Beese, L. S. Crystal structures of the anticancer clinical candidates R115777 (Tipifarnib) and BMS-214662 complexed with protein farnesyltransferase suggest a mechanism of FTI selectivity. *Biochemistry* 2004, 43, 6877–6884.
- (12) Nicholas, J. B.; Vance, R. E. M.; Burke, B. J.; Hopfinger, A. J. A molecular mechanics valence force field for sulfonamides derived by ab initio methods. *J. Chem. Phys.* **1991**, *95*, 9803–9811.
- (13) Liang, G. Y.; Bays, J. P.; Bowen, J. P. Ab initio calculations and molecular mechanics (MM3) force field development for sulfonamide and its alkyl derivatives. *Theochem.* **1997**, *40*, 1/2, 165–179.
- (14) Hillal, S. H.; Karickhoff, S. W.; Carreira, L. A. A rigorous test for SPARC's chemical reactivity models: Estimation of more than 4300 ionization pK(a)s. *Quant. Struct.-Act. Relat.* **1995**, *14*, 348.
- (15) Hillal, S. H.; El-Shabrawy, Y.; Carreira, L. A.; Karickhoff, W. W.; Toubar, S. S.; Rizk, M. Estimation of the ionization pK_a of pharmaceutical substances using the computer program sparc. *Talanta* **1996**, *43*, 607–619.
- (16) Chen, B. C.; Skoumbourdis, A. P.; Sundenen, J. E.; Rovnyak, G. C.; Traeger, S. C. Efficient molar-scale synthesis of 1-methyl-5-acylimidazole triflic acid salts. *Org. Process Res. Dev.* 2000, *4*, 513–614.
- (17) Kelley, J. L.; Miller, C. A.; McLean, E. W. Attempted inhibition of histidine decarboxylase with β-alkyl analogues of histidine. J. Med. Chem. 1977, 20, 721–723.
- (18) Venishi, J.; Hamada, M.; Aburatani, S.; Matsui, K.; Yonemitsu, O.; Tsukube, H. Synthesis of chiral nonracemic 1-(2-pyridinyl)ethylamines: Stereospecific introduction of amino function onto the 2-pyridinylmethyl carbon center. J. Org. Chem. 2004, 69, 6781– 6789.
- (19) Sali, A.; Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779–815.
- (20) Bahl, A.; Brunk, B.; Crabtree, J.; Fraunholz, M. J.; Gajria, B.; Grant, G. R.; Ginsburg, H.; Gupta, D.; Kissinger, J. C.; Labo, P.; Li, L.; Mailman, M. D.; Milgram, A. J.; Pearson, D. S.; Roos, D. S.; Schug, J.; Stoeckert, C. J., Jr.; Whetzel, P. PlasmoDB: The *Plasmodium* genome resource. A database integrating experimental and computational data. *Nucleic Acids Res.* **2003**, *31*, 212–215.
- (21) Gu, J. M.; Hu, X. R.; Xu, W. M. 7-Nitro-1,2,3,4-tetrahydroquinoline. *Acta Crystallogr.* **2006**, *E*62, o62–o63.
- (22) Trager, W.; Jensen, J. B. Human malaria parasites in continuous culture. *Science* **1976**, *193*, 673–675.
- (23) Yokoyama, K.; Zimmerman, K.; Scholten, J.; Gelb, M. H. Differential prenyl pyrophosphate binding to mammalian protein geranylgeranyltransferase-I and protein farnesyltransferase and its consequence on the specificity of protein prenylation. *J. Biol. Chem.* **1997**, 272, 3944–3952.
- (24) McMartin, C.; Bohacek, R. S. QXP: Powerful, rapid computer algorithms for structure-based drug design. J. Comput.-Aided Mol. Des. 1997, 11, 333–344.

JM0703340